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1. Habit Formation Models

1.1. Time-separability in utility function. Recall that the fundamental asset
pricing equation can be written as,

(1.1) (risk premium) dt = −
(
dS

S

)(
dM

M

)
.

We have shown that for time-separable utility functions (i.e., utility functions
that only depend on current consumption) there exists some scalar/constant κ such
that the SDF in the underlying economy can be defined as,

κ
∂u

∂C
(C∗ (t) , t) =M (t) ,

where C∗ denotes optimal consumption.
For Breeden’s CCAPM w/RA we have shown that the fundamental asset pricing

equation is,

(risk premium) dt = CRRA×
(
dS

S

)(
dC∗

C∗

)
.

In Merton’s ICAPM, consumption is driven by a vector X of state variables
related to the real business cycle, with value function (i.e., indirect utility function)
J (W,X, t) and intertemporal envelope condition,

(1.2)
∂J

∂W
=
∂u

∂C
,

⇒ κJW =M,

with dM = . . . dW + . . . dX + . . . dt. Without time-separability (1) still holds, but
(2) will not hold unless we assume that the state vector is Markov and then we still
have,

κJW =M.

Why is κJW a SDF?
Suppose we are given an extra unit of wealth W at date s, and we want to

consume and invest it in the risky asset k (the tree in a Lucas type economy) until
date t. Given the dynamic consumption-portfolio optimization problem then it
must be,

JW (W (s) , X (s) , s) = Es

[[
Sk (t)

Sk (s)
JW (W (t) , X (t) , t)

]]
,

⇒ 1 = Es

[[
Sk (t)

Sk (s)

JW (W (t) , X (t) , t)

JW (W (s) , X (s) , s)

]]
.
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1.2. Constantinides (1990) internal habit consumption model. Time-separability
in the utility function is relaxed to allow adjacent complementarity in consumption
or “habit persistence”. This approach to consumption started from the seminal work
of Duesenberry and others in consumption theory. In Constantinides’ model, cur-
rent utility is a function of past consumption and current consumption. So “habit
persistence” is defined endogenously (i.e., is an internal process). Moreover, this
setting is a simple example of Cox, Ingersoll, and Ross general equilibrium pro-
duction economy model with assets’ supply perfectly elastic (i.e., constant return
technologies). The key role of “habit persistence” in asset pricing is to introduce
a wedge between the intertemporal marginal rate of substitution (IMRS) and in-
vestors’ coefficient of risk aversion (CRA) in order to resolve both Mehra-Prescott’s
equity risk premium and the risk-free rate puzzles.

(A1) u

C, X︸︷︷︸
habit

, t

 = exp (−ρt) 1
1−θ (C − bX)

1−θ, for some constant b. If

b > 0 (the special case assumed by Constantinides) the quantity bX is
the habit or “subsistence level” of consumption. If b = 0 then the utility
function is of the standard time-separable form and displays constant
relative risk aversion. Alternatively, if b < 0 then past consumption
adds rather than subtracts from current utility, and the model is dis-
playing “durability” in consumption. Note that X is a function of past
consumption with X (0) as initial consumption: dX = (−aX + C) dt,
and X (t) = exp (−at)X (0) +

´ t
0
exp (−a (t− s))C (s) dS, where C (s)

is an exponential weight average of past consumption.
The RA investor’s dynamic consumption-portfolio problem is solved through the
familiar Hamilton-Jacobi-Bellman (HJB) equation,

0 =Max︸ ︷︷ ︸
C,π

E

[ˆ ∞
0

exp (−ρt)u (C (t)) dt

]
.

At date t we have,

Max︸ ︷︷ ︸
C,π

E

[ˆ ∞
t

exp (−ρs)u (C (s)) ds

]
,

given W (t) =W and X (t) = X. Thus,

= exp (−ρt)MaxE

[ˆ ∞
t

exp (−ρ (s− t))u (C (s)) ds

]
,

given W (t) =W and X (t) = X. And,

= exp (−ρt)MaxE

[ˆ ∞
0

exp (−ρs)u (C (s)) ds

]
,

given W (0) =W and X (0) = X. Finally,

= exp (−ρt) J (W,X) .

Notice that time is not relevant given the infinite-horizon assumption. We re-
write,

= exp (−ρt)W 1−θf

(
X

W

)
,
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where f (z) = J (1, z). Then,

0 =Max︸ ︷︷ ︸
C,π

exp (−ρt)u (C,X)− ρexp (−ρt) J (W,X)︸ ︷︷ ︸
Jt

+

+exp (−ρt) JW

rW +Wπ (µ− r) +WπσdB︸ ︷︷ ︸
−C

+

(1.3) +exp (−ρt) JX dX︸︷︷︸
(−aX+C)dt

+
1

2
exp (−ρt) JWWW

2π2σ2

 .

Because habit persistence is endogenous i.e., dX is a function of past consump-
tion only, we don’t have second order terms in the HJB involving dX. The F.O.N.C.
w.r.t. C is,

uC − JW + JX = 0,

(1.4) JW = uC + JX ,

where if b is positive then the sign of JX is negative. One needs to know what
is J . The F.O.N.C. w.r.t. π is,

JW (µ− r)W + JWWW
2σ2π = 0,

(1.5) π∗ =
µ− r

−WjWW

JW
σ2

= (CRA in terms of J)
−1 µ− r

σ2
.

1.2.1. Empirical evidence of internal habit consumption. Heaton studied the empir-
ical capabilities of the internal habit formation model assuming that consumption
and dividend growth rates follow a bivariate VAR with parameters estimated using
simulated method of moments (that is to accomodate time aggregation). He found
evidence of local durability of consumption and significant habit formation in the
long-run.

Assuming local durability and habit persistence in the long-run improves the
fit of the CCAPM compared to both the time-additive model of Breeden and the
special case of pure habit persistence (without local durability). This improvement
though comes with a significant cost in terms of relative high volatility in the SDF.

1.3. Campbell and Cochrane (1999) external habit consumption model.
Campbell and Cochrane introduced a model of external habit preference or “keeping
with the Joneses” preferences. The model is an example of a Lucas pure-exchange
economy (unlike Constantinides that is an example of a production economy) with
perfectly inelastic supplied assets (i.e., the trees of the Lucas economy). Conse-
quently, in the external habit model dX has a dB term that entails second order
terms in the HJB equation and is not dependent on C i.e., the habit is an exogenous
stochastic process.

(A1) u

C, X︸︷︷︸
habit

, t

 = exp (−ρt) 1
1−θ (C −X)

1−θ. Now X is exogenous with

dX
X = something dt+ φσCdB, for 0 < φ < 1.

(A2) dC
C = µCdt+ σCdBC ,
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(A3) dS
S = µSdt+ σSdBS , and

(A4) dBC , dBS have correlation ρ.
Note,

∂u

∂C
= (C −X)

−θ
,

∂2u

∂C2
= −θ (C −X)

−θ−1
,

∂2u

∂C∂X
= θ (C −X)

−θ−1
.

Recall,

κ
∂u

∂C
=M

Then by Ito’s lemma,

dM = κ
∂2u

∂C2
dC + κ

∂2u

∂C∂X
dX + . . . dt,

⇒ dM

M
=

∂2u
∂C2

∂u
∂C

dC +
∂2u
∂C∂X
∂u
∂C

dX + . . . dt

= − θ

C −X
dC +

θ

C −X
dX + . . . dt

= −θd (C −X)

C −X
+ . . . dt,

(1.6) ⇒ (risk premium) dt = θ

(
dS

S

)(
d (C −X)

C −X

)
.

Notice that “consumption surplus” (i.e., C−X) is low during economic recessions
and high during economic booms. Moreover, volatility is inversely proportional to
C − X too. That is, is low during economic booms and high during economic
recessions. Given dC and dX we write,

dC − dX = something dt+ [φσC (C −X) + (1− φ)CσC ] dBC ,

⇒ d (C −X)

C −X
=

[
φσC + (1− φ) C

C −X
σC

]
dBC + something dt,

(risk premium) dt = θ

[
φσC + (1− φ) C

C −X
σC

]
σSρ

(1.7) ⇒ (risk premium) dt = θσCσSρ︸ ︷︷ ︸
time separable part

[
φ+ (1− φ) C

C −X

]
.

Case 1. Economic recessions: C
C−X will be large as C−X is small (eventually of

small order) during economic recessions.
Case 2. Economic booms: C

C−X will be small as C −X is large during economic
booms.
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1.3.1. Equity risk premium puzzle resolution. Recall that in the time-separable case
the Hansen Jagannathan lower bound is ,

|risk premium| = |θσCσSρ| ≤ θσCσS ,

⇒ |Sharpe′s ratio| ≤ θσC .
Because σC is historically too low, then θ has to be unrealistically high. Under
habit consumption though,

|risk premium| =
∣∣∣∣θσCσSρ [φ+ (1− φ) C

C −X

]∣∣∣∣ ≤ θσCσS [φ+ (1− φ) C

C −X

]
,

(1.8) ⇒ |Sharpe′s ratio| ≤ θσC
[
φ+ (1− φ) C

C −X

]
.

Now θ doesn’t have to be unrealistically high to satisy (8) as
[
φ+ (1− φ) C

C−X

]
can be large (especially during economic recessions).

1.3.2. Risk free rate puzzle resolution. Under time-separable utility functions the
risk free rate is equal to,

r = ρ+ θµC −
1

2
θ (1− θ)σ2

C︸ ︷︷ ︸
o(·)

,

where r is too high w.r.t. the historic observed level given that the third term in the
equation is of small order (i.e., σC is too low). Under habit consumption though,

(1.9) r = ρ+ θµC −
1

2
θ (1− θ)σ2

C

[
φ+ (1− φ) C

C −X

]
,

where r is no longer too high given that the third term in (9) can be large (especially
during economic recessions).

1.3.3. Empirical evidence of external habit consumption. A formal econometric im-
plementation of the external habit formation model is undertaken in Bansal et al.
(2004), where it is assumed that dividends are co-integrated with consumption (i.e.,
both share a common stochastic linear trend). They estimate the model using a
simulated method of moments over an auxiliary VAR. Using data from 1929-2001
they found that the external habit model does a good job in matching the moments
of consumption and dividend growth. However, this model still does not resolve the
volatility puzzle: the price/dividend ratio is more volatile historically than what is
implied by habit formation.

2. Recursive Utility Models

2.1. Kreps and Porteus (1978) model. Another class of time-inseparable utility
is the one developed by Kreps and Porteus in discrete time, and Duffie and Epstein
(1992) in continuous time. The specification is recursive as lifetime utility denoted
by Vt depends on expected values of future lifetime utility Vs, s > t (i.e., forward
looking model with conditional certainty equivalents CE). The future is summarized
by a single index: the certainty equivalent of next period’s utility.

Recall that for a myopic (i.e., one time period from 0 to 1) investor,

u = u (C0) + δu (C1) ,
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where the slope of the indifference curve is the intertemporal marginal rate of
substitution of consumption IMRS = dC1

dC0

∣∣∣
u=constant

= u′(C0)
δu′(C1)

. In this special
case, the elasticity of the IMRS (EIS) is equal to the investor’s coefficient of risk
aversion,

∂logIMRS

∂logC1
= CRA.

For an infinite horizon investor we have,

V0 = E0

[ ∞∑
i=0

f (Ci, Vi+1)

]
,

where f is some aggregator function of the consumption plan C0, C1, . . . and life-
time utility V0, V1, . . .. The aggregator function has two components: 1) a risk
component that characterizes the (intra-temporal) trade-off across the outcomes of
a static gamble, which defines the certainty equivalent of future utility; and 2) a
time component that characterizes the (inter-temporal) trade-off between current
consumption and the certainty equivalent of lifetime utility. In general,

(2.1) (∀i) Vi = Ei

 ∞∑
j=i

f (Cj , Vj+i)

 .
Consider first the time-separable case f (C, V ) = u (C)− (1− δ)V . Then,

V0 = E0 [u (C0)− (1− δ)V1 + f (C1, V2) + f (C2, V3) + · · · ] ,

V1 = E1 [u (C1)− (1− δ)V2 + f (C2, V3) + f (C3, V4) + · · · ] ,
⇒ V0 = E0 [u (C0)− (1− δ) {E1 [u (C1)− (1− δ)V2 + f (C2, V3) + f (C3, V4) + · · · ]}+

+f (C1, V2) + f (C2, V3) + · · · ]

= E0

[
u (C0)− (1− δ)u (C1) + (1− δ)2 V2 − (1− δ) [f (C2, V3) + f (C3, V4) + · · · ] + ,

+u (C1)−(1− δ)V2+f (C2, V3)+f (C3, V4)+ · · · , by law of iterated expectations,

= E0 [u (C0) + δ (C1) + · · · ] ,
which is a special case of recursive preferences. Without time-separability,
(2.2)

V0 = E0

[ ∞∑
i=0

f (Ci, Vi+1)

]
= E0 [f (C0, V1) + f (C1, V2) + · · · ] = E0 [f (C0, V1) + V1] ,

⇒ IMRS = −
∂V0

∂C0

∂V0

∂C1

,

where C0 enters through f (C0, V1), and C1 enters through f (C1, V2) and V1 in
f (C0, V1). Recall that V1 = E1 [f (C1, V2) + f (C2, V3) + · · · ]. Thus,

∂V0
∂C0

=
∂f (C0, V1)

∂C0
= u′ (C0) , and

∂V0
∂C1

=
∂f (C1, V2)

∂C1
+
∂f (C0, V1)

∂V1
+
∂V1
∂C1

=
∂f (C1, V2)

∂C1
+
∂f (C0, V1)

∂V1

∂f (C1, V2)

∂C1
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=

(
1 +

∂f (C0, V1)

∂V1

)
︸ ︷︷ ︸

δ

(
∂f (C1, V2)

∂C1

)
︸ ︷︷ ︸

u′(C1)

, and

IMRS =

∂f(C0,V1)
∂C0(

1 + ∂f(C0,V1)
∂V1

)(
∂f(C1,V2)

∂C1

) .
Recall that the CRA is equal to −

V1
∂2V0
∂V 2

1
∂V0
∂V1

, and ∂V0

∂V1
= 1 + ∂f(C0,V1)

∂V1
, ∂2V0

∂V 2
1

=

∂2f(C0,V1)
∂V 2

1
. Then,

(2.3) CRA =
V1

(
∂2f(C0,V1)

∂V 2
1

)
(
1 + ∂f(C0,V1)

∂V1

) 6= elasticity of IMRS.

Which makes sense, as the CRA proxies for investors’ willingness to substitute
consumption across states of nature at any given date t (an intra-temporal mea-
sure), and the EIS captures investors’ willingness to substitute consumption over
time in response to changing economic conditions (an inter-temporal measure).
Hence, investors with recursive preferences care about the timing of the resolution
of uncertainty (i.e., investors are no longer standard expected utility maximizers).

2.1.1. The Epstein-Zin-Weil specification. Following Epstein and Zin (1989) and
Weil (1989) agents maximize a recursive utility function with aggregator function,

f (C, V ) = ν−1 [(1− δ) ν (C) + δν (V )] ,

where ν (x) = x1−θ−1
1−θ ; θ ≡ γ

1−ψ (with ν (x) = log (x)if θ = 1); 1 − γ is the CRA;
and ψ is the EIS. The SDF of the underlying economy is,

(2.4) δθE

[{
Ct+1

Ct

}−( θψ )
rθ−1M,t+1rt+1 |Ft

]
= 1,

where rθ−1M,t+1 is the one-period holding period return on the wealth portfolio; and
rt+1 is the one-period holding period return of any security in the mean-variance
efficient set.
Case 1. γ < (1− ψ), and an early resolution of uncertainty is preferred.
Case 2. γ > (1− ψ), and a later resolution of uncertainty is preferred.
Bansal and Yaron (2004) introduce a persistent component in consumption and
dividend growth in an asset pricing model with Epstein-Zin-Weil preferences. As-
suming ψ > 1 and γ = 10, the model generates an equity risk premium consistent
with its historical value. Critical to the success of the model is the balancing of
intertemporal substitution and risk aversion with γ 6= 1

ψ and ψ > 1.
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