LECTURE NOTES 6

ARIEL M. VIALE

1. ConbpITIONAL CAPM

Claim. We say that the CAPM holds if for each asset k and each state of the world
s the fundamental asset pricing formula (i.e., the conditional CAPM),

%) (4)
. . . . S Wi
risk premium - dt = risk premium Wy, X ————*
AW
(fluctuating) W

holds, and the maximal Sharpe’s ratio is state-dependent.

)

Proof. Let S be the price of a non-dividend paying asset.
(A1) %% = pgdt + okdBy.
(A2 dVVVf;;L = fpdt + 0,,dB,,
(A3) B+ By, have correlation p.
(A4) The drift, difussion, risk-free rate r, and market price of risk are all constant.
(A5) Fix time from 0 to 1.
Then in each state s and for each asset k it must be that,

e e N

O’kep
pe =1 = (fm — 1) X 92

by the fundamental asset pricing formula. Also,
Sk (1) = S (0) e/‘k—%”i+ﬂBk(1)7

W (1) = W, (0) ehm+07+0Bm (1)
Note that E[Sy (1)] = Sk (0)e** and E[W (1)] = Wi, (0) et so that py, =
logE {?&Eé%] tm = logE [wzgéﬂ var logs Eég = o}, var lOgW El) = 62, and
k(1)

cov (log 5.(0) logW El)> = ofp. If the conditional CAPM holds, then in each state

s it must be,

cov log (),log Win(1)
o0 [E0] s~ (g [ 0)] ) (1og5:ta} too ety )

Sk (0) Wi (0) var log %’;%;

continuously compounded

(]

Note. For empirical work use continuously compound returns to estimate the betas
and then run the second-pass regression using simple log returns.
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LECTURE NOTES 2

1.1. From the pricing kernel (SDF) to a conditional factor model. We
assume that the pricing kernel or SDF is some affine function of a vector of N risk
factors fi,

(1) M (t) = ¢f_, + ¢3;,t—1ft,
where ¢ | = (gbto,l? ¢£t_1) € Fi_1: Fi_1 is the filtration or information set up to

t—1;and ff = (1, r ) The first conditional moment restriction is,

~ T .
2) RILEIM (8)|Fia] = 1= R, B [filFia ] i,

and by fundamental asset pricing, the second moment restriction for each k risky
asset is,

3)  Elrke|Feoa] =]y = —R_jcov (ree, M (t) |Fie1),  Vrie € Rigy.

Substituting (2) into (3) gives,

cov (rje, M (t) | Fi—1)
E[M(t)[Fia]

Substituting (1) into this last expression and using properties of covariances gives,

¢{7100v (Tk,ta ftT | Ft—1 )

E [Tk,t |./Tt,1] — 7”{71 = — v’l’kyt S Rk,t'

E = = v R
[Tk,t ‘ft 1] Ti—1 E [M (t) |Ft—1] ) Tkt € k,ts
which by using (2) again can be re-written as,
¢! cov Tty [ | Fio1
E [Tk,t Fio1] — 7"{_1 == ~ ( d tT |~ ! )a Vree € Ry,
E [ft |~7:t—1:| bt—1
f T T
cov (k. t, Fi cov ( ft, Fi_

<:>E[Tk,t 7t—1]_7{—1 = _¢t_1 ( ko fi 17 1) (ft fe 172 1)7VTk,t € Ry s,

X
~ T _ T

E [ft |-7:t—1i| Pt—1 cov (fu £ 1Fi1)
and finally substituting terms backwards and rearranging gives,
—¢{71COU (ft, ftT |~7:t71)

~ T .

E {ft ‘]:t—l} bt—1
5;{:%1 X _Rif_lcov (fe, M () | Fe-1)

which by using the definition of covariance in terms of expectations gives,

T
Br.t—1 X

)

(4) Ers|Fia] = vy = Bliihien,
—1
where ﬁl{,tq = [cov (ft,ftT \,7-}_1)] cov (fe, Tkt
element
Ani—1 = =Ry (B [faiM (O] |Fio1] = E[M (8)|For] E [fot |Fea])Vn =1,..., N,
Note that the conditional moment restrictions (2) and (4) are together equivalent
to the moment condition,

(5) E[M (t) Rkt |Fi—1] = 1,Vk and

Fi—1); and A\—q is a vector with

(6)  Ani—1=E[forlFi1] =Rl EM ) fni|Fio1] VYn=1,...,N.
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If f, is an excess return then,

E[M(t) fur|Fic1] =0, Vn=1,...,N,
and A, ;—; is the conditional mean of the nth risk factor. If f,, is a simple return
then E[M (t) fni|Fic1] =1, Yn=1,..., N and (6) gives excess returns.

We say that the nth risk factor is “priced” if A\, .—1 > 0. If A\, 1—1 = O then it
must be that M (t) and f,; are uncorrelated. Cochrane (1996) notes that finding
that the nth risk factor is priced is not the same as finding that the nth risk factor
is useful in pricing assets i.e., (bi,t (t) > 0Vt in equation (1).

Example. (The conditional CAPM) Let N =1 and
M(t)=¢) | +o7, (r%" — r{_l) where r{" is the return of some benchmark mar-

ket index. Then substituting the pricing kernel into (6) and the resulting expression
into (4) gives,

Elrg|Fi-] - 7"{71 = Br,t—1 (E [rim.t

Example. (The multifactor conditional asset pricing model) Let M (t) =
g (rY, ..., rPN) where g is some affine function of N benchmark returns. Then for
any i € Ry,

Blrue|Fer] =1l = 8o (B[} 1Fia] —rly) + -

ft—l] — Tg:1> , VTht € Rk,t-

+8Y,, (E [N |Fia] - 7-{,1) , V7t € Ris.

Note. The conditional factor model represented in reduced-form should have a
“connection” with some underlying structural economic model in order to price all
payoffs (returns) in the economy.

2. CONDITIONING DOWN THE CONDITIONAL CAPM
Let N=1and f; =r" — Tf_l.
A. If F; is the null information set then,
E [Tk,t] — po = B E [ft] , Vk
where F {q@t} o = 1; B = M, and ¢;_1 = ¢ are state independent,

Var(ft)
which is not consistent with dynamic economies.

B. More generally, we fix an information set F; and assume rif_l € Firandr €
Fp. Recall E[ry|Fiov] =1y = B, My, where A}, = E [r;ﬁ —rl | Fia ]

Define R; = (735 — 7{71) for any ry, then the equilibrium restriction is the pair

(ak,t,h ﬁ,f t—l) that solves the conditional least-squares minimization problem,

(7) Min  E[(Ri— anio1 — BLe BRI | Fin ] s
()Ak,g—lvﬂ}:t—l
satisfies,
cov [(T,e, 1¢") |Fi—
ﬁkf}til _ (e, 73) | Fe 1]’ and a1 = E Ry |-7:t71]_ﬁ1?:t71E [RY"|Fi—1] = 0.

Var (ri™ |Fi—1)
The conditional beta model implies that the conditional alphas are zero, but this

don’t imply that the unconditional alphas are zero too! Define gy = FE [ﬁﬁt_l} as
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the mean of the conditional beta for each security k, and let & ;1 denote the zero-
mean random deviation of the conditional beta from its mean & —1 = 5151571 — O.
If we substitute 37, ; into the F.O.N.C. of problem (7) and condition down to
unconditional expectations we verify that,

®) B (R = BB B = Geos (B)’] = 0, and
© Bl(Bis = BuRy") = Gea1 B = 0.

I,

(10) E g1 (BP)] =0, and

(11) BB} =0,

then (8) and (9) reduce to the normal equations of the unconditional least-squares
projection. That is, o = E [Ry+] — Sk E [R}"] = 0 and we obtain the unconditional
CAPM with market beta 0, = E {ﬁ,it_l}. Conditions (10) and (11) to condition
down the conditional CAPM can be re-written as,

(12) E {fk,t—l (RT)Q] = cov (fkvt,afnyt_l) + cov (fk_,t_l, ()\t}-_l)Q) =0, and

(13) E &1 R = cov (fk,t—l, /\;‘,7:—1) =0,
which are Lewellen and Nagel (2006) conditions for the unconditional CAPM. That
is, any variation in ﬂ,f ;1 should be uncorrelated with both the market price of risk
(A1) and with (0'12,,1725_1 + M)

The empirical literature using the conditional CAPM generally assumes that
M (t) is some affine function of a state vector z;—1 with coeflicients,

¢? 1 =a’+ 21, and qbtf_l =af +b/z 4,
for some z; € F;, which is observable by the investors butnot by the econometrician.
Assume N =1 then,
(14) E[(a®+ 21+ al fe + b frzi1) Riy] =1, Vk.
Let f; = (ft, zt—1, frz:—1) denote the expanded set of risk factors, and M* (t) =

a®+ 80z, +af fi+ bf ftzt—1 the pricing kernel or stochastic discount factor. Then
(14) is treated as an expanded unconditional version of the conditional CAPM with,

Elres —p=BEN Vk

cov(f; ,Tk,¢)

where p is the return on an unconditional zero-beta portfolio; G, = cou(/? f*T)is a
toJt
3 x 1 vector; and A = —pucov (ff, M* (t)) is a 3 x 1 vector too.
If (12) and (13) don’t hold, then for the econometrician that is unable to observe
the conditional information used by investors to price assets (i.e,. her filtration set
is the null set) any variables useful to predict the state-dependent A; should appear

as additional factors in the unconditional version of the model.
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