
LECTURE NOTES 5

ARIEL M. VIALE

1. The Martingale Approach to Asset Pricing in Continuous Time

1.1. Money market state price deflator. Let r (t) be the instantaneous risk-free
rate at date t such that R (t) ≡ R (0) e

´ t
0
r(s)ds. Thus, by Ito’s lemma dR

R = r (t) dt
given R (0) = 1. Assuming there exists a SDF to price contingent claims at date
T , then the price of any random payoff X̃ received at date T can be appropriately
deflated to make it driftless i.e., a martingale. Define the money market state price
deflator,

1×M (t) ≡ E
[
e
´ T
t
r(s)dsφ̃

]
, where φ̃ =M (T ) .

Claim. i) Price at time t = 0 of any random payoff X̃ at date t ≤ T is P0

(
X̃
)
=

E0

[
M (t) X̃

]
; ii) Price at date t ≤ T of any random payoff X̃ received at time T is

Pt

(
X̃
)
= Et

[
M(T )
M(t) X̃

]
= 1

M(t)Et

[
M (T ) X̃

]
.

Proof. i) Price at time t = 0 of receiving X̃ at time t ≤ T is equal to the price at
time t = 0 of receiving e

´ T
t
r(s)dsX̃ at T , which is equal to E0

[
M (T ) e

´ T
t
r(s)dsX̃

]
= E0

[
Et

{
M (T ) e

´ T
t
r(s)dsX̃

}]
by the law of iterated expectations. Thus,

E0

[
X̃Et

{
M (T ) e

´ T
t
r(s)ds

}]
= E0

[
X̃M (t)

]
as required.

ii) Let φ̃t,T = SDF at date t for contingent claims with maturity T , meaning
price at t of receiving X̃ at T is equal to Et

[
φ̃t,T X̃

]
= E

[
M (t)Et

[
φ̃t,T X̃

]]
=

E
[
Et

[
M (t) φ̃t,T X̃

]]
= E

[
M (t) φ̃t,T X̃

]
, by law of iterated expectations. Recall

that M (t) φ̃t,T = SDF at time t = 0, hence its equal to M (T )⇒ φ̃t,T = M(T )
M(t) as

required. �

1.2. Equivalent martingale measure. From 1.1. is clear that we only need to
know M (t, T ) to price assets. Let dS

S = µdt + σdB, dV
V = (µ+ q) dt + σdB, and

M (t) = er(T−t)E
[
φ̃
]
with φ̃ =M (T ). Then,

Claim. 1. M (t) = er(T−t)Y (t), where Y (t) is a martingale.

Proof. ∀t < u, Y (u) = Eu

[
φ̃
]
⇒ Et [Y (u)] = Et

[
Eu

[
φ̃
]]

= Et

[
φ̃
]
= Y (t) as

required. �

Claim. 2. The deflated process MV is a martingale.
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Proof. Et [M (u)V (u)] = Et [M (u) equS (u)] = equEt [M (u)S (u)] =
1

M(t)Et [M (u)S (u)] = e−q(u−t)S (t)= price at time t of getting S (u) at time
u > t ⇒ equEt [M (u)S (u)] = eqtM (t)S (t) =M (t)V (t) as required. �

Claim. 3. dY
Y = −θdB for some stochastic process θ.

Proof. (Martingale representation theorem) Assume dlogY = − 1
2θ

2dt−θdB ⇒
logY (t) = logY (0)−

´ T
0

1
2θ

2 (t) dt−
´ T
0
θ (t) dB (t)

⇒ Y (T ) = Y (0) e−
´ T
0

1
2 θ

2(t)dt−
´ T
0
θ(t)dB(t). Recall that M (T ) = Y (T ) and

Y (0) = E
[
φ̃
]
.

Thus, M (t) = er(T−t)Y (t) = erT e−rtY (t)⇒ dM
M = −rdt + dY

Y by Ito’s lemma.
That is, dMM = −rdt− θdB.

The deflated process satisfies,
d (MV )

MV
=
dM

M
+
dV

V
+

(
dM

M

)(
dV

V

)
, by Ito′s lemma

= (−r + µ+ q − θσ) dt− θdB + σdB

⇒ −r + µ+ q − θσ = 0,

because MV is a martingale by claim #2 i.e., it is a driftless process and, �

Definition 1. (Market price of risk) θ ≡ µ+q−r
σ is the unique market price of

risk (Sharpe’s ratio on stocks).

1.3. Feynman-Kac solution.

Proposition. The unique SDF is the Feynman-Kac solution to the PDE of the
deflated stochastic process,

(1.1) M (T ) = e−rT−
1
2 θ

2T−θB(T ).

Example. Price of a call at date t = 0 ⇒ C (0) = E
[
M (T ) (0, S (T )−K)

+
]
,

where M (T ) = e−
´ T
t
r(s)ds is the Feynman-Kac solution to the BSM PDE (3).

1.4. Fundamental Asset Pricing Equation. Let M (t) = Et

[
e
´ T
t
r(s)dsφ̃

]
be

the state price deflator, V is the price of a non-dividend paying portfolio, so that
the deflated process MV is a martingale. Set M (t) = e−

´ t
0
r(s)dsEt

[
e
´ T
0
r(s)dsφ̃

]
,

and define Y (t) ≡ Et

[
e
´ T
0
r(s)dsφ̃

]
so that M (t) = e−

´ t
0
r(s)dsY (t). Applying Ito’s

lemma twice we obtain,
dM

M
= −rdt+ dY

Y
, and

d (MV )

MV
=
dM

M
+
dV

V
+

(
dM

M

)(
dV

V

)
,

which has no drift. Notice that dV
V does have drift (expected return) and,

0 =
d (MV )

MV
= (µ+ q − r) dt+

(
dM

M

)(
dV

V

)
,

(1.2) (µ+ q − r) dt = −
(
dM

M

)(
dV

V

)
.
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Example. For a static one-period discrete asset pricing model we show that
risk premium = −Rfcov

(
R̃i, φ̃

)
.

Example. For the BSM model, θ = µ+q−r
σ , dMM = −rdt− θdB, dVV = (µ+ q) dt+

σdB ⇒
(
dM
M

) (
dV
V

)
= −θσdt and ∴ (µ+ q − r) dt = −

(
dM
M

) (
dV
V

)
.

1.5. General asset pricing with multiple assets and sources of risk assum-
ing markets are (dynamically) complete.

Max
c
E [u (c)] ,

s.t. E
[
φ̃c
]
=W (0) ,

whereW (0) is some given initial level of wealth; and u (c) is some utility function
satisfying some technicalities (i.e., quasiconcave, SI, TI, and bounded). Note that
u′ (c) = θφ̃ for some constant θ⇒ 1

θu
′ (c) = SDF . Let R1, R2 be returns on

portfolio strategies e.g.,
R1 = eqTS(T )

S(0)

R2 = erT
,

where the dividend yield and risk free rate are not necessarily constant.

Claim. Let c be optimal consumption. Then markets are complete and it must be,

E [u′ (c)R1] = E [u′ (c)R2] .

Proof. (b.w.o.c.) Suppose not. W.l.o.g. assume that the direction of improvement
in utility is as follows,

E [u′ (c) (R1 −R2)] > 0.

Define c∗ = c + ε × (R1 −R2)︸ ︷︷ ︸
zero cost and feasible

for some c > 0. Then u (c∗) = u (c) +

u′ (ĉ) ε (R1 −R2) for some ĉ between c and c∗ by Mean-value theorem. Thus,

E [u (c∗)] = E [u (c)] + εE [u′ (c∗) (R1 −R2)] > E [u (c)] ,

for some sufficiently small ε. Set k = E [u′ (c)R1] and E
[
1
ku
′ (c)R

]
= 1 ∀R =⇒

1
ku
′ (c) = SDF . Note that there will be a different SDF for each investor according

to their marginal utilities u′ (c) and markets are incomplete. �

Define M (T ) = 1
ku
′ (c). Set Y (T ) = M (T ) , Y (t) = Et [Y (T )] ,M (t) =

Et

[
e
´ T
t
r(s)dsM (T )

]
, and W (T ) = c. Then W (t)M (t) = Et [W (T )M (T )].

Fact. For any non-dividend paying portfolio with price V , the state deflated process
MV is a martingale by martingale representation theorem.

Fact. (Risk premium on V )dt = −
(
dV
V

) (
dM
M

)
, and we need wealth to be correlated

with the state price deflator.

Suppose n Brownian motions. Then, dM
M = −rdt −

∑n
i=1 θidBi, where θi can

be stochastic. Define θ =
√∑n

i=1 θ
2
i and note that dB =

∑
i θidBi√∑

i θ
2
i

is a Brownian

motion by Levy’s theorem (i.e., (dB)
2
=

∑
θ2dt∑
θ2 = dt). Thus for any asset, dV

V =

something dt+
∑
i σidBi and risk premium · dt =

∑n
i=1 θiσi. Also,∑n

i=1 θiσi√∑
i σ

2
i

,
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is Sharpe’s ratio. Note that the squared Sharpe’s ratio is equal to,

(
∑n
i=1 θiσi)

2∑
i σ

2
i

≤
(∑n

i=1 σ
2
i

) (∑n
i=1 θ

2
i

)∑
i σ

2
i

=

n∑
i=1

θ2i ,

where θ2 is Hansen-Jagannathan’s lower bound. Recall dYY = −θdB and assume
that θ (t) depends only on B (s) for some s ≤ t. As M (T )W (T ) depends on
Y (T ) then W (T ) = c must satisfy 1

ku
′ (W (T )) = Y (T ). By the martingale

representation theorem,
d (MW )

MW
= ρdB,

⇒ dM

M
+
dW

W
+

(
dM

M

)(
dW

W

)
= ρdB,

dW

W
= something dt+ (ρ+ θ) dB.

Note that if dWW perfectly correlates with dB then we can substitute W with M
such that,

(1.3) something dt = −risk premium of W.

and dM
M = −θ dWW (by Martingale representation theorem).

Example. Multiple Assets Pricing Formula: The instantaneous CAPM assuming
myopic investors and log-normal returns.

Let,

dSk
Sk

= µkdt+

n∑
i=1

σk,idBi,∀k = 1, . . . ,m, and i = 1, . . . , n (independent).

Given a SDF assume markets are complete (m ≥ n). DefineM (t) ≡ er(T−t)Et
[
φ̃
]
,

Y (t) = Et

[
φ̃
]
is a martingale. That is, by the martingale representation theorem

⇒ dY
Y = −

∑n
i=1 θidBi ⇒

dM
M = −rdt −

∑n
i=1 θidBi. Assume θ′is are constant.

Then, for a RA with log utility preferences the portfolio choice problem is,

Max
c
E [log c] ,

s.t. E
[
φ̃c
]
=W (0) ,

for some given initial value for wealth. Assuming interior solutions exists the
F.O.N.C.s w.r.t. c are,

c =
W (0)

φ̃
,

M (t)W (t) = Et [M (T )W (T )] =W (0) ,

⇒W (t) =W (0) ert+
1
2

∑n
i=1 θ

2
i t+

∑n
i=1 θiBi(t), by Ito′s lemma,

⇒ dW

W
= rdt+

n∑
i=1

θ2i dt+

n∑
i=1

θidBi, by Ito
′s lemma.

Find portfolio π. Thus,

dW

W
= rdt+

m∑
k=1

πk (µk + qk − r) dt+
m∑
k=1

πk

n∑
i=1

σk,idBi,
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= rdt+

m∑
k=1

πk (µk + qk − r) dt+
m∑
k=1

n∑
i=1

πkσk,idBi.

So
∑n
i=1 πkσk,i = θi, for k = 1, . . . ,m ⇔ (σ1,i, σ2,i, . . . , σm,i)

 π1
...
πm

 = θi.

Set
∑T

=

 σ11 · · · σ1m
...

. . .
...

σn1 · · · σnm

, and solve
∑
︸︷︷︸
n×m

T
π︸︷︷︸

m×1

=

 θ1
...
θn


︸ ︷︷ ︸

n×1

. Thus,


dS1

S1

...
dSm

Sm

 = dS
S = µdt+

∑ dB1

...
dBn

 with variance-covariance matrix

(
dS
S

) (
dS
S

)T ⇔∑
(dB) (dB)

T ∑T
=
∑∑T

dt, and π =
(∑∑T

)−1∑
θ. Put

Vk (t) = eqktSk (t). Then, for each k MVk is a martingale and,
dM

M
+
dVk
Vk

+

(
dM

M

)(
dVk
Vk

)
has no drift.

⇒ (µk + qk) dt = rdt−
(
dM

M

)(
dVk
Vk

)
,

and

(
dM

M

)(
dVk
Vk

)
= −θ

(
dW

W

)(
dVk
Vk

)
,

(1.4) ⇒ (µk + qk − r) dt = risk premium W ×

(
dW
W

) (
dVk

Vk

)
(
dW
W

)2︸ ︷︷ ︸
cov(·,W )
var(W )︸ ︷︷ ︸

.

instantaneous CAPM
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