LECTURE NOTES 5

ARIEL M. VIALE

1. THE MARTINGALE APPROACH TO ASSET PRICING IN CONTINUOUS TIME

1.1. Money market state price deflator. Let r (¢) be the instantaneous risk-free
rate at date ¢ such that R (t) = R (0) elo 7945 Thus, by Ito’s lemma % =r(t)dt
given R(0) = 1. Assuming there exists a SDF to price contingent claims at date
T, then the price of any random payoff X received at date T’ can be appropriately
deflated to make it driftless i.e., a martingale. Define the money market state price
deflator,

IxM((t)=F [eftT T(S)dsq;] . where ¢ = M (T).
Claim. i) Price at time ¢ = 0 of any random payoff X at date t < T is P, (f() =
Ey [M (t) X }; i) Price at date t < T of any random payoff X received at time T is
- MT) < -
P, (X) = B |55 X] = o B M (D) K]

Proof. i) Price at time ¢t = 0 of receiving X at time t < T is equal to the price at
time ¢ = 0 of receiving e/i "4 X at T, which is equal to E, [M (T) eli T(s)dsf(}

= Ey [Et {M (T) el ’”(S)dsf(H by the law of iterated expectations. Thus,
Ey [X'Et {M (T) el T(S)dSH = E [XM (t)} as required.

ii) Let ggtj = SDF at date t for contingent claims with maturity 7', meaning
price at t of receiving X at T is equal to F; [Qgt,TX}: E [M (t) Ey [g?)t,TXH:
E [Et [M (t) (Z;tTXH = F [M (t) qNStQTX], by law of iterated expectations. Recall
that M (t) ;.7 = SDF at time t = 0, hence its equal to M (T)= ¢, = % as
required. ([

1.2. Equivalent martingale measure. From 1.1. is clear that we only need to
know M (t,T) to price assets. Let % = pdt + 0dB, % = (u+ q) dt + 0dB, and

M(t) = e T-DE M with = M (T). Then,
Claim. 1. M (t) = e"T=DY (1), where Y (¢) is a martingale.

Proof. ¥t < u, Y (u) = E,, M = E,[Y (u)] = E, [Eu [qs” = B, [&] = Y (¢) as
required.

Claim. 2. The deflated process MV is a martingale.
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Proof E[M (u) V (u)] = By [M (u) e (u)] = et By [M (u) § (u)] =
Ei[M (u) S (u)] = e~ =98 (t)= price at time t of getting S (u) at time

]VI(t)
u>t=el"Ey [M(u)S(u)] =el"M(t)S(t) = M (t)V (t) as required. O
Claim. 3. d—y = —0dB for some stochastic process 6.

Proof. (Martingale representation theorem) Assume dlogY = %QZdtfﬁdB =
logY( ) = logY (0) — [ 16 (¢ dt—fo (t)dB (t)
Y (T) = ( Ye~ fT 30°(Wdt— [ 6(MAB(1) - Recall that M (T) = Y (T) and
Y (0) —F M
Thus, M (t) = e"T=0Y (t) = eTe Y ()= L = —rdt + 4= by Ito’s lemma.
That is, 0 = —rdt — 0dB.
The deﬂated process satisfies,

d(MV) dM _dv (dM) (dV

Mv M v T\ M)V
=(—r+p+q—00)dt —0dB + cdB
= —r+pu+q—00=0,
because MV is a martingale by claim #2 i.e., it is a driftless process and, O

) , by Ito's lemma

Definition 1. (Market price of risk) § = £F1=" s the unique market price of
risk (Sharpe’s ratio on stocks).

1.3. Feynman-Kac solution.

Proposition. The unique SDF is the Feynman-Kac solution to the PDE of the
deflated stochastic process,

(11) M(T) _ e—rT—%92T—9B(T).

Example. Price of a call at date t = 0 = C(0) = F [M (T)(0,S(T) — K)Jr},
where M (T) = e~ J{ 7(9)ds ig the Feynman-Kac solution to the BSM PDE (3).

1.4. Fundamental Asset Pricing Equation. Let M (t) = E; [eftT T(S)dsé] be
the state price deflator, V is the price of a non-dividend paying portfolio, so that
the deflated process MV is a martingale. Set M (t) = e~ Jor(®)ds p, {efoT T(S)dsgg],

and define Y (¢) = E; {efoT 7'(3)‘18&} so that M (t) = e~ Jo r()dsy (t). Applying Ito’s

lemma twice we obtain,
aMm g+ dy d
Mo Ty

d(MV) dM  dv (dM) <dv>’

mv - m v i\ )\v
which has no drift. Notice that d7V does have drift (expected return) and,

dgjy‘/y) (u+q—r)dt+<d]\ﬂf> (d‘y>

0 - - (420) (40,

0=
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Example. For a static one-period discrete asset pricing model we show that
risk premium = —Rycov (Ri, (;3)

Example. For the BSM model, § = £+ M — gt — 9B, 2V = (1 + q) dt +

odB = (%) (42) = —fodt and . (n+q—r)dt = — (L) (47).
1.5. General asset pricing with multiple assets and sources of risk assum-
ing markets are (dynamically) complete.

MazE [u ()],

st E [éc} — W (0),

where W (0) is some given initial level of wealth; and w (¢) is some utility function
satisfying some technicalities (i.e., quasiconcave, SI, TI, and bounded). Note that
u' (¢) = ¢ for some constant 6= su' (c) = SDF. Let Ry, Ry be returns on
portfolio strategies e.g.,
R, — 1T 5(T)

500
Ry — o7

where the dividend yield and risk free rate are not necessarily constant.

Claim. Let ¢ be optimal consumption. Then markets are complete and it must be,
E[u (¢c)Ri] = E[u (c) Ry .

Proof. (b.w.o.c.) Suppose not. W.l.o.g. assume that the direction of improvement
in utility is as follows,
E[u' (¢) (R1 — Rs)] > 0.

Define ¢* = ¢ + ¢ x (R1 — Rs) for some ¢ > 0. Then u(c*) = u(c) +
—_———

zero cost and feasible
u’ (é)e (R1 — Ryp) for some ¢ between ¢ and ¢* by Mean-value theorem. Thus,

Efu(c)] = Eu(c)] +eEu (c") (R = Rp)] > Efu(c)],
for some sufficiently small €. Set k = E [u’ (c) R1] and E [u/ (¢) R] =1 VR =
+u/ (¢) = SDF. Note that there will be a different SDF for each investor according

to their marginal utilities u’ (¢) and markets are incomplete. (]
Define M (T) = zu'(c). Set Y(T) = M(T),Y (t) = E[Y(T])],M () =

E, [el;T’“@)dSM (T)|, and W (T) = ¢. Then W (t) M (t) = E, [W (T) M (T)).

Fact. For any non-dividend paying portfolio with price V', the state deflated process
MYV is a martingale by martingale representation theorem.

Fact. (Risk premium on'V )dt = — (%) (%), and we need wealth to be correlated
with the state price deflator.

Suppose n Brownian motions. Then, % = —rdt — Y., 0;dB;, where 6; can

. o 0 D) _ >, 6:dB; . .
be stochastic. Define § = />_." | #7 and note that dB = Non is a Brownian
S 0%dt

motion by Levy’s theorem (i.e., (dB)* = gz = dt). Thus for any asset, 4 =
something dt + Y. 0;dB; and risk premium - dt =Y, 6;0;. Also,
Z?Zl bio;
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is Sharpe’s ratio. Note that the squared Sharpe’s ratio is equal to,

(Z?:l 92"%‘)2 < (Z?:l 01'2) (Z?:l 912) _ iea

2 > 2
i0i i0i

where 62 is Hansen-Jagannathan’s lower bound. Recall 4¥ = —#dB and assume
that 0 (¢t) depends only on B (s) for some s < t. As M (T)W (T) depends on
Y (T) then W (T) = ¢ must satisfy 1u' (W (T)) = Y (T). By the martingale
representation theorem,

:>d]\4+dVV+(d]\/[> (dVV> = pdB
M W M W ’
dw

W something dt + (p + 0) dB.

Note that if % perfectly correlates with dB then we can substitute W with M
such that,

(1.3) something dt = —risk premium of W.
and 4 — —GdWW (by Martingale representation theorem).

Example. Multiple Assets Pricing Formula: The instantaneous CAPM assuming
myopic investors and log-normal returns.

Let,

d n
5k = pupdt + Zak dB;,Vk=1,....,m, andi=1,...,n (independent).
Sk =

Given a SDF assume markets are complete (m > n). Define M (t) = e"T-) E, {é} ,

Y (t) = E; [gz;} is a martingale. That is, by the martingale representation theorem

= L = 3" 0:dB; = W = —pdt — 3" 0,dB;. Assume 6)s are constant.
Then, for a RA with log utility preferences the portfolio choice problem is,
MazFE [log c],
c

st. E [(,Z;Cj| =W (0),

for some given initial value for wealth. Assuming interior solutions exists the
F.O.N.C.s w.r.t. ¢ are,
W (0)

7
M@Q)W(t) =E M (T)W(T)] =W (0),
= W (t) =W (0) it e sy 07+, 0iBi(t) by Ito's lemma,
dw - -
= W rdt + ; 0 dt + Z; 0;dB;, by Ito's lemma.
Find portfolio w. Thus, 1 l
aw

W= rdt+;7rk (tr + qx —r)dt+’;ﬂk;0k,id3i,
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m m n
= rdt + Z 7k (e + qe — 1) dt + Z Z Ok, dB;.
k=1 k=11i=1
1
So Z:L:l TkOk,i = 0’&7 fOT’k' = 17"'7m < (01,i702,i7-~-707n,i) = 01
Tm
o111 " Oim - 6h
Set ZT = P , and solve Z T o= : |- Thus,
————
nx1
e=8 dB,
= % = pdt+ with variance-covariance matrix
dSm
T dB, 1
(%) (%) & L @B) @B)' L' =L X dt,and 7 = (LX) 26, Put
Vi (t) = %' Sy, (t). Then, for each k MV} is a martingale and,
dM  dVy dM\ (d
SR + 7‘/: (M) (J;:) has no drift.
dM\ ([ dV
= (ks + qi) dt = rdt — <M> <Vk> )
(LY (AR _ (WY (Vi
M Vi ) w Vi)’
() (m)
14 v,
(1.4) = (pk + qx — ) dt = risk premium W x (dw); .
v
cov(-,W)
var(W)

instantaneous CAPM
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