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Introduction
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� General equilibrium theory introduces risk in economies 
through (state)-contingent commodities.

� These are very abstract constructions. In the examples, 
we show that risk can be alternatively represented by a 
more concrete measure: probabilities.

� So far we have not made the connection between 
probabilities and contingent commodities explicit.

� That is our goal now. We discuss the classical model of 
choice under uncertainty.
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Problem
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� The classical theory of choice under uncertainty rests on 
solid axiomatic foundations. It had made important 
contributions to finance, insurance, and information 
economics.

� The classical theory has been challenged on several 
grounds both from within and outside the field of 
economics.
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Goal and Contribution
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� Illustrate the most important challenges to the standard 
model and discuss plausible solutions if any. 

� Introduction of a “new analytical tool” to describe the 
model and address its problems, if any.

� Report the impact of these challenges on the way we view 
and model economic behavior under uncertainty as 
financial economists. 
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Choice under Uncertainty
- Classical Approach -
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Lotteries
� Assets can be represented as a list of plausible 

payoffs with their respective probabilities.

� We call such list a lottery or gamble i.e.,
L := [ x1,π1 ; … ; xS,πS ] (a random variable).

� A riskless asset is a degenerate lottery 
L = [x,1].
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Expected value

� XVII century - Blaise Pascal and Pierre de 
Fermat: Choice over gambles can be 
determined by their expected value              .
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The St. Petersburg Paradox
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A hypothetical gamble
� Suppose this gamble:

� “Toss a fair coin repeatedly. If it is head in the 
first toss I will pay you $1 and the gamble is 
over. If it takes two tosses to land a head then I 
will pay you $2, $4 if it takes three tosses, $8 if 
it takes four tosses, etc."

� Sounds like a good deal. After all, you can't 
loose. So here is the million dollar question:

� How much are you willing to pay for this 
gamble?
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The expected value of the gamble is:

� Paradox: There is a huge discrepancy between most 
individuals’ valuations and its expected value.

� With probability 1/2 you get $1 -
� With probability 1/4 you get $2 -
� With probability 1/8 you get $4 -
� etc.
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� We note that even 
though the expected 
payoff is infinite, the 
distribution of payoffs is 
not attractive…
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The cdf tells us that with 93% 
probability we get $8 or less, with 
99% probability we get $64 or less.

The reason for the paradox is that the 
payoff increases at the same rate that 
the probability decreases.
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� Bernoulli suggested that large gains should be weighted 
less as the gain of $x was not necessarily worth twice as 
much as the gain of $(1/2)x (Law of diminishing 
returns) . He suggested to use the natural logarithm. 
[Cramer suggested the square root.]
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Resolution of the paradox: You pay at most eln(2) = $2 to 
participate in this gamble. Payoffs increase at a lower rate 
than probabilities decrease. 
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The Super St. Petersburg Paradox
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Another hypothetical gamble
� Suppose this gamble:

� “Toss a fair coin repeatedly. If it is head in the 
first toss I will pay you $e and the gamble is 
over. If it takes two tosses to land a head then I 
will pay you $e2, $e4 if it takes three tosses, $e8

if it takes four tosses, etc."
� Sounds like another good deal.
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The expected utility of the gamble is:

� Paradox: There is a huge discrepancy 
between most of individuals’ valuations and its 
expected utility.

� As long as probabilities decline at a lower rate 
than the payoff increases, we can always 
construct a gamble where the expected utility 
is infinite.
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The Expected Utility Representation
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Cardinal utility function

von Neumann-Morgenstern preferences:   

� The ordinal utility function u is a cumbersome 
object because its domain is a large set L, the 
set of all lotteries.

� So we look for a representation of the form
U([w1,π1; …; wS,πS]) = ∑s πs u(ws).
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Risk Premium
� The shape of the vNM-utility 

function contains a lot of 
information.

E[U(w)]

w

U(w)
Consider a lottery  with two 
prizes…

w0=w+ε0 w1=w+ε1

U(w0)

U(w1)

E[w]
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Risk Premium
� The lottery ε has only two possible outcomes in terms of 

the investor’s wealth, [w0,p0;w1,p1].

� We assume that the expected value of the lottery is 
E[ε]=∑spsεs=0. That is, a pure risk or fair lottery.

� We define the investor’s risk premium π as the maximum 
amount of money the investor is willing to pay in order to 
insure against the risk of the fair lottery. Hence (w-π) is 
the certainty equivalent (CE) level of wealth associated 
with the fair lottery s.t. U(w-π) = E[U(w+ε)]. 

Risk aversion means that π>0.

~

~
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Risk Aversion
� The investor strictly prefers the 

(sure) average payoff of the  
lottery over the random payoff 
of the lottery.

� But this is Jensen’s inequality
for concave functions. Hence,
if the investor is risk-averse
then the vNM utility function
has to be concave.

E[U(w)]

U(E[w])

w

U(w)

w0 w1

U(w0)

U(w1)

E[w]

U-1(E[U(w)]) = CE

>
How does the vNM utility 
function of a risk-neutral 
investor look like?

π
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� Note that U’’(w) < 0 if concave 
(risk aversion). 

� Otherwise U’’(w) > 0 (risk 
preference). 

� This is a property of the 
preference ordering. 

Measures of risk-aversion: 

A = -U’’(w)/U’(w)        (Arrow-Pratt coefficient of absolute risk aversion)

R = -w·U’’(w)/U’(w)    (Arrow-Pratt coefficient of relative risk aversion)

w

U(w)

w

U(w)Risk Aversion Risk Preference
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Pratt’s (1964) Risk Premium:

We assume ε sufficiently small, so we can use a Taylor series 
approximation of U(w-π) = E[U(w+ε)] around ε = 0 and π = 0.

Expanding the left-hand side around π = 0 gives:

U(w-π) ≈ U(w) – πU’(w) + o(w)

Expanding the right-hand side around ε = 0 gives:

E[U(w+ε)] ≈ E[U(w) + εU’(w)+1/2ε2U’’(w)+o(w) ] = U(w)+1/2σ2U’’(w)

Where σ2= E[ε2] is the variance of the lottery. Equating both results and 
solving for the risk premium:

U(w) – πU’(w) = U(w)+1/2σ2U’’(w) → π = -1/2σ2U’’(w)/U’(w) =  1/2σ2A(w)

~ ~

~

~ ~ ~

~
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Arrow’s (1971) Risk Premium:

We assume now that p0 = p1 = 1/2. How much it has to change the 
probability of winning to make the investor indifferent to the lottery?

π = p1 – p0 = p1 – (1 – p1) = 2p1 – 1 → p1 = 1/2 (1+π) and p1 = 1/2 (1-π)

These are risk-adjusted (neutral) probabilities. The expected utility of the 
lottery is:

U(w) = 1/2(1+π)U(w1)+1/2(1-π)U(w0). Taking a Taylor series approximation 
around ε = 0 gives:

U(w) =1/2(1+π)[U(w)+εU’(w)+1/2ε2U’’(w)+o(w)]
+1/2(1-π)[U(w)-εU’(w)+1/2ε2U’’(w)+o(w)] = U(w)+επU’(w)+1/2ε2U’’(w)+o(w)

Rearranging terms and solving for π = -1/2εU’’(w)/U’(w) = 1/2εA(w)

Note that if we multiply π ε = 1/2ε2A(w) = Pratt’s measure.

~

~ ~

~ ~ ~ ~

~ ~

~ ~
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-e-aw (Negative exponential)
U’(w) =ae-aw

U’’(w) =-a2e-aw

A = -(-a2e-aw / ae-aw) = a
R = wa

CARA Utility Functions

CRRA Utility Functions
1/δ·wδ (Power)
U’(w) =wδ-1

U’’(w) =(δ-1)wδ-2

A = - (δ-1)wδ-2 / wδ-1  = (1-δ)/w
R = w (1-δ)/w = α
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We note that constant relative risk aversion with decreasing absolute risk 
aversion seems to be more plausible than constant absolute risk aversion.
Arrow on the other hand favored CARA + IRRA as evidence that money is a 
luxury good.

log w (Log) – Myopic utility function –
U’(w) =1/w
U’’(w) =-1/w2

A = -(-1/w2 / 1/w) = 1/w
R = w / w = 1

If α < 1 then power preferences less risk averse than log preferences.

If α = 1 then power utility function collapses to log utility function.

If α > 1 then power preferences more risk averse than log preferences.
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Name Function A R

Affine a+bw 0 0

Quadratic
aw – 1/2bw2

w<a/b
Increasing Increasing

Exponential –e–aw a Increasing

Power w1–α /(1–α) Decreasing α

Bernoulli log w Decreasing 1
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� All the utility functions in the previous table belong to the 
hyperbolic absolute risk aversion or HARA class 
(Alternatively affine risk tolerance functions or ART).

� Let absolute risk tolerance be defined as the reciprocal of 
absolute risk aversion T = A-1.

HARA Class of Utility Functions

U is HARA if T is an affine function T(w) = a + bw.

The slope b is sometimes called cautiousness.
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General Form
� Robert Merton show the general form of a HARA utility 

function as:

DARA iff b > 0 (power & log),

CARA iff b = 0 (negative exponential), and

IARA iff b < 0 (quadratic), and 

If one can prove a result for CARA and CRRA then one can prove a general result in the HARA class.
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Choice under Uncertainty
- Modern Approach -
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� The strongest implication of the expected utility 
hypothesis comes from the form of the preference 
function: Is linear in probabilities.

� Assume the set of lotteries over the fixed wealth 
levels w1< w2< w3 represented by the set of all 
probability triples of the form: 
P=(p1, p2, p3), 
where pi = prob(wi), 
and Σpi = 1.
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Marschak-Machina Triangle

� Since p2 = 1 – p1 - p3, we can 
represent the lotteries as points 
in the unit triangle.

� Note that northwest 
movements lead to 
stochastically dominating 
lotteries (they shift probability 
from w2  to w3  and from w1 to 
w2).

1

1

0 p1

p3 
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Risk Averse
� The solid lines are indifference 

curves. 

� The dashed lines are iso-
expected value lines, where 
going north-east implies mean 
preserving spread (pure 
increase in risk) over  the 
average outcome w2 .

1

1

0 p1

p3 

� For a risk-averse investor U(*) 
is concave and her indifference 
curves will be steeper than the 
iso-expected value lines. 
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Risk Lover

1

1

0 p1

p3 

� For a risk-lover investor U(*) is 
convex and her indifference 
curves will be flatter than the 
iso-expected value lines. 
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vN-M Axioms
(A1) Completeness

> For all P*, P either P*  ffff P or P ffff P*. 

(A2) Transitivity

> If P* ffff P and P  ffff P** then P* ffff P**. 

(A3) Continuity (Solvability)

> If P** ffff P* ffff P, then there exists some λ [0,1] s.t. 

P* ~ λP** + (1-λ)P where the latter is a compound lottery.

~ ~

~ ~ ~

~ ~



38

P*

P**

αααα

1-αααα

P

P**
1111−−−−αααα

αααα

(A4) Independence

> If P* ffff P then αααα P*+ (1- αααα) P** ffff αααα P+ (1- αααα) P**.

> Toss a fair coin with probability (1- αααα) of landing tails with prize equal 
to lottery P**, and be asked before the flip whether you would have 
rather P* or P in the event of a head. If it land tails the choice does 
not matter, otherwise you are in effect back to the choice P* or P and 
it would be rational to make the same choice than before (No regret).

Probability mixtures over a 
common outcome set

(A5) Stochastic Dominance
> Let P1, P2 be two compound lotteries with parameters λ1, λ2 [0,1]. 

Then P1 ffff P2 iff λ1 > λ2 .

~ ~
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The Allais Paradox
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� Allais 1953, 1979. 

A1: 1 chance of $ 1,000,000

versus

A2: 0.10 chance of $ 5,000,000

0.89 chance of $ 1,000,000

0.01 chance of $ 0

and

A3: 0.10 chance of $ 5,000,000

0.90 chance of $ 0

A4:  0.11 chance of $ 1,000,000

0.89 chance of $ 0 

WHAT IS YOUR CHOICE?

Well it depends on your attitude 
towards risk…

1

1

0 p1

p3 

A1

A2 A3

A4
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� Paradox: Majority of subjects 
picked A1 in the first pair and 
A3 in the second pair.

� This implies that indifference 
curves are not parallel but fan 
out.

� This is a special case of a 
general pattern known as the 
common consequence effect.

1

1

0 p1

p3 

A1

A2 A3

A4
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� Intuitively the common consequence effect 
means that if the distribution of one of the 
lotteries involves very high outcomes, the investor 
prefers not to bear the extra risk in the unlucky 
event and consequently chooses the sure 
outcome.

� But if one distribution involves very low outcomes, 
the investor will be willing  to bear the extra risk in 
the lucky event, and chooses the risky outcome.  

The Common Consequence Effect
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� The violation of the linear property in probabilities 
led researchers to generalize the expected utility 
model by deriving non-linear functionals for the 
preference function (Chew (1983), Fishburn 
(1983), Quiggin (1982) Machina (1982), Hey 
(1984), Segal (1984), Yaari (1987)).

� These are flexible specifications able to exhibit 
stochastic dominance, risk aversion, risk 
preference, and fanning out.

Non Expected Utility Models
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Preference Reversal
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� Slovic and Lichtenstein 1971. 

P-bet: p chance of $ X

1-p chance of $ x

versus

$-bet: q chance of $ Y

1-q chance of $ y

where X and Y are respectively greater 
than x and y, p is greater than q, and Y 
is greater than X. The choice is 
between better probability of winning 
versus greater possible gain.

Any EU or N-EU model will imply that the 
chosen bet is the one with the higher 
CE or value. 

Slovic an Lichtenstein and numerous 
authors after them found that subjects 
pick the P-bet although the $-bet has 
the largest value. 

� Psychologists Interpretation

There is no common mechanism 
generating both choice and valuation 
(they are distinct processes).

Individuals exhibit response mode 

effects or framing.

1) Context dependence (Duplex 
gambles, state dependent 
preferences).

2) Reference point (Markowitz, 1952, 
and Kahneman and Tversky, 1979).
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� Kahneman and Tversky ‘s(1979) 
Prospect Theory.

The vNM utility should be a function of 
gains and losses in wealth with 
respect to some reference point (e.g., 
current wealth) instead of final wealth. 

� Two problems with framing:

� Are experimental observations 
on framing effects for real? 

� Is the reference point 
observable?

% change in Value

Utility

+100

-100

Reference point
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Empirical Weighting Functions
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� Economists Interpretation

Violation of transitivity axiom. Old issue 
in economics i.e., the existence of 
demand functions and general 
equilibrium are robust to intransitivity.

Expected regret model:

r(x,y) = -r(y,x)

Note that if r(x,y) = U(x)-U(y)

the model reduces to the EU model.  

Graphically these preferences give 
indifference curves that cross forming 
an intransitive cycle.

Note though that near the origin they 
shouldn’t cross and transitivity holds. 1

1

0 p1

p3 
p*

p

p**
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Ellsberg’s Paradox
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� Ellsberg 1961. 

Which game would you choose?

Game 1 – Win $1,000 if you pick a red 
ball.

Game 2 – Win $1,000 if you pick a blue 
ball.

What about these?

Game 3 – Win $1,000 if you pick a red 
or yellow ball.

Game 4 – Win $1,000 if you pick a blue 
or yellow ball. 
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� The modal of subjects choose games 1 and 4. But yellow should not matter! 
So it seems that people prefer events with known probabilities.

� Ambiguity is uncertainty about probability created by missing information 
that is relevant and could be known.

� Does “weight of evidence”/ambiguity matters?
� Longstanding debate:

� Savage: No.
• Logic overrides discomfort of not knowing.

� Keynes, Knight, Ellsberg, experiments: Yes, agents are uncertainty 
averse.

� A New Paradigm (Gilboa-Schmeidler et al.)
• Pessimism over sets of beliefs – Wald’s Maximin theory..
• Non-additive beliefs.
• Robust control theory.
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Evidence: Neuroeconomics
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Conclusion
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� The evidence and theories reported show the 
weaknesses of the standard paradigm. 

� To what extent these new models will be 
incorporated into mainstream economic thought?

� The answer will depend on their capacity to 
address the issues better than the SEU model.


