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1. Dynamic Programming (A Brief Review)

1.1. Discrete time problem.
Let time t ∈ [0, T ] with u (c0) , δu (c1) , . . . , δT−1u (cT−1) , δTu (cT ) = B (WT )(i.e.,

bequest).
(A.1) No labor income.
(A.2) At date t = 0, W0 is given as an initial endowment.
(A.3) Wt = wealth before consumption at date t.
(A.4) Invest Wt − ct at date t.
(A.5) Choose πt, vector of portfolio weights.

Wealth at time t + 1 is equal to (Wt − ct)πTt Rt where Rt =

 Rt+1,1

...
Rt+1,n

 is the

vector of returns over [t, t+ 1].
The dynamic behavioral problem is stated,

Max
c

u (c0) + E

[
T−1∑
t=1

δtu (ct)

]
+ δTE [B (WT )] .

We solve this problem using backward induction,
At date T .
Given WT choose cT to Max u (cT ) + B (WT − cT ) and define J (WT , T ) =

max.value.
At date T − 1.
GivenWT−1 choose cT−1 toMax u (cT−1)+δE [J (WT , T )] , s.t. WT = (WT−1 − cT−1)πT−1R̃T

and define J (WT−1, T − 1) = max.value.
At date T − 2.
Given WT−2 choose cT−2 toMax u (cT−2)+δE [J (WT−1, T − 1)] , s.t. WT−1 =

(WT−2 − cT−2)πT−2R̃T−1 and define J (WT−2, T − 2) = max.value.
And so on...

1.2. Bellman’s principle of optimality in continuous time.
From the previous analysis we know that
J (W,T ) = Max

{portfolio,consumption}
E [u (c (t)) + δE [J (W ′, t+ 1)]] , where W ′ is

the level of wealth at time t + 1. Assume consumption only at time T and de-
fine û (c) = δTu (c), then drop ˆ so that the problem becomes MaxE [u (W (T ))].
Therefore, by principle of optimality,

J (W, t) =MaxE [J (W ′, t+ 1)]⇒ 0 =MaxE [J (W ′, t+ 1)− J (W, t)] ,
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Assume continuous trading and consumption, then by Bellman’s principle,

0 =Max [drift of J ] .

Assume i.i.d. returns with value function J (W, t) then by Ito’s lemma,

(1.1) dJ =
∂J

∂t
dt+

∂J

∂W
dW +

1

2

∂2J

dW 2
(dW )

2
.

Claim. The Bellman equation satifies the transversality condition u (W (T )) =
J (W (T ) , T ) for any plausible policy and Bellman’s principle for the optimal policy.

Proof. It must be u (W (T )) = J (W (0) , 0)+
´ T
0
dJ = J (W (0) , 0)+

´ T
0
drift of J+´ T

0
something dB

⇒ E [u (W (T ))] = J (W (0) , 0) + E
[´ T

0
drift of J

]
+ E

[ˆ T

0

something dB

]
︸ ︷︷ ︸

=0

.

Then it must be that E
[´ T

0
drift of J

]
= 0 if the policy is optimal (Dynamic

consistency). �

Example. BSM model with q = 0.

dW

W
= rdt+ π (µ− r) dt+ πσdB,

drift J =
∂J

∂t
dt+

∂J

∂W
[r + π (µ− r)] + 1

2

∂2J

dW 2
W 2π2σ2.

And the Bellman equation is 0 =Max
π

{
∂J
∂t dt+

∂J
∂W [r + π (µ− r)] + 1

2
∂2J
dW 2W

2π2σ2
}
,

with transversality condition J (W,T ) = u (W ) .

2. Intertemporal Asset Pricing

2.1. Breeden’s consumption-CAPM (CCAPM). Let uh = utility function of
the hth investor. Recall that under fundamental asset pricing for each asset,

(risk premium) dt = −
(
dSk
Sk

)(
dMh

Mh

)
,

where Mh (t) = f
(
Ch (t) , t

)
with f denoting marginal utility. By Ito’s lemma,

dMh =
∂f

∂t
dt+

∂f

∂Ch
dCh +

1

2

∂2f

∂ (Ch)
2

(
dCh

)2
= something dt+

∂f

∂Ch
dCh

= something dt+
∂2u

(
Ch (t) , t

)
∂ (Ch)

2 dCh.

Write u′ = ∂u
∂C and u′′ = ∂2u

∂C2 then,

dMh

Mh
=
u′′
(
Ch (t) , t

)
u′ (Ch (t) , t)

dCh.
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Assume h = (RA) and multiply and divide by Ch that is,

dMh

Mh
=
Chu′′

(
Ch (t) , t

)
u′ (Ch (t) , t)

dCh

Ch

= − (Arrow − Pratt coefficient of RRA)× dCh

Ch

(2.1) ⇒ (risk premium) dt = CRRA×
(
dSk
Sk

)(
dCh

Ch

)
.

Without the (RA) assumption we still have,

⇒ (risk premium) dt = −
Chu′′

(
Ch (t) , t

)
u′ (Ch (t) , t)

×
(
dSk
Sk

)(
dCh

Ch

)

⇔
u′
(
Ch (t) , t

)
u′′ (Ch (t) , t)

(risk premium) dt = −
(
dSk
Sk

)(
dCh

)
,

so that after adding across h investors we get,

−
∑
h

u′
(
Ch (t) , t

)
u′′ (Ch (t) , t)

(risk premium) dt =

(
dSk
Sk

)(
dCaggregate

)

(2.2) (risk premium) dt =

(
−
∑
h

u′
(
Ch (t) , t

)
u′′ (Ch (t) , t)

)−1
︸ ︷︷ ︸

reciprocal of sum of inverse CARA

(
dSk
Sk

)(
dCaggregate

)
.

2.2. Merton’s intertemporal-CAPM (ICAPM). Let X =vector of n−factors,
with k assets, and a vector of n + k Brownian motions B. Assuming X follows a
Markov process then we have,

dX(t)︸ ︷︷ ︸
n×1

= a

X(t)︸︷︷︸
n×1

 dt+ b (X(t))︸ ︷︷ ︸
n×(n+k)

dB(t)︸ ︷︷ ︸
(n+k)×1

.

With dynamics for the risky assets following a vector of geometric brownian mo-
tions, 

dS1

S1

...
dSk

Sk

 =
dS(t)

S (t)︸ ︷︷ ︸
k×1

= µ (X (t))︸ ︷︷ ︸
k×1

dt+ σ (X(t))︸ ︷︷ ︸
k×(n+k)

dB(t)︸ ︷︷ ︸
(n+k)×1

,

and the short interest rate,

dr (t) = r (X (t)) dt+ κ (X (t)) dB (t) .

The investors’ dynamic behavioral problem can be stated as,

Max
{C,πi}

{
E

ˆ T

0

u (t, C (t)) dt

}
,
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s.t. dW = r

(
1−

k∑
i=1

πi

)
Wdt+

k∑
i=1

πiW

µidt+
n+k∑
j=1

σi,jdBj︸ ︷︷ ︸
dSi
Si

− rdt

− Cdt.
That is, the investor maximizes utility by trading and consuming through time.
Define J (W,X, t) = Max

{
E
´ T
t
u (s, C (s)) ds

}
, then the corresponding Bell-

man equation is,

(2.3) Max
{C,π}

{E [dJ ] + u (t, C (t))} = 0,

with Dynkin operator (by Ito’s lemma),

dJ =
∂J

∂W
dW +

n∑
i=1

∂J

∂Xi
dXi +

∂J

∂t
dt+

1

2

∂2J

∂W 2
(dW )

2
+

n∑
i=1

∂2J

∂W∂Xi
(dW ) (dXi)+

(2.4) +
1

2

n∑
i=1

n∑
j=1

∂2J

∂Xi∂Xj
(dXi) (dXj) .

Notice that maximizing over C is equivalent to maximizing over u (C, t) − ∂J
∂W .

Assuming an interior solution exists the F.O.N.C. w.r.t. C is,

− ∂J

∂W
+
∂u (C, t)

∂C
= 0

⇔ ∂u (C, t)

∂C
=

∂J

∂W
(envelope theorem condition) ,

(2.5) ⇒ ∂J

∂W
= constant× SDF.

And the F.O.N.C. w.r.t. π is,

(2.6) (risk premium) dt = −
(
dSk
Sk

)(
d ∂J∂W
∂J
∂W

)
,

where,

d
∂J

∂W
(W (t) , X (t) , t) =

∂2J

∂W 2
dW +

n∑
i=1

∂2J

∂W∂Xi
dXi+

∂2J

∂W∂t
dt+

1

2

∂3J

∂W 3
(dW )

2
+

+something dt.

Thus, (
dSk
Sk

)(
d ∂J∂W
∂J
∂W

)
=

∂2J

∂W 2
dW +

n∑
i=1

∂2J

∂W∂Xi
dXi +O (t)

⇒ (risk premium) dt = −
∂2J
∂W 2

∂J
∂W

(
dSk
Sk

)
(dW )−

n∑
i=1

∂2J
∂W∂Xi

∂J
∂W

(
dSk
Sk

)
(dXi) .

This holds for each investor h thus,∑
h

(
∂J
∂W
∂2J
∂W 2

)
(risk premium) dt = −

(
dSk
Sk

)(
dW aggregate

)
−
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−
∑
h

(
∂J
∂W
∂2J
∂W 2

)
n∑
i=1

∂2J
∂W∂Xi

∂J
∂W

(
dSk
Sk

)
(dXi)

⇒ (risk premium) dt = −

∑
h

1

CARAh︸ ︷︷ ︸
in terms of J(W )


−1

︸ ︷︷ ︸
θaggregate(t)

(
dSk
Sk

)(
dW aggregate

)
−

−

∑
h

(∑n
i=1

∂2Jh

∂W∂Xi
∂2Jh

∂W2

)
∑
h

1
CARAh︸ ︷︷ ︸
λj(θ)

(
dSk
Sk

)
(dXi)

(2.7)

⇒ (risk premium) dt = −θaggregate (t)
(
dSk
Sk

)(
dW aggregate

)
+ λj

(
dSk
Sk

)
(dXi) .

Note. We can differentiate three hedging funds: 1) 1−π invested in the riskless asset;
2) part of π is long in the MVE tangency portfolio; and 3) the rest is long/short in
a portfolio with maximal correlation with the vector of state variables X depending
on the sign of λj .

Intuition: Innovations in the vector of state variables X have an impact in the
time-varying investment opportunity set, so investors need to hedge against changes
in the investment opportunity set. The indeterminate sign in the second term in (7)
is because it depends on innovations in X being bad or good news w.r.t. marginal
utility.

Claim. For empirical purposes this means that the risk premium across test assets
sould be some affine function of the market portfolio plus portfolios that are shown
to have maximum correlation with innovations in the state variables.

Proof. It follows from previous analysis. �

2.3. An Approximate CAPM. (A1) The joint distribution of returns Rt+1 and
nonportfolio income for investor h i.e., Yh,t+1 is independent of date-t information,
for each t and h.

Or
(A1’) Each investor has myopic preferences (i.e., log utility function) and zero

endowments Yh,t+1.
In either case, both assumptions imply that Jhwxj=0 ∀h, j. This weak condition

allows the derivation of the conditional CAPM as an approximation to the ICAPM.
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