
LECTURE NOTES 4

ARIEL M. VIALE

1. Brownian Motion

Definition 1. (Brownian motion) A random process that evolves continuously
in time and has the property that its change over any period of time is normally
distributed with mean zero and variance equal to the length of the time period.

Note that the brownian motion is a martingale with continuous paths. Let B (t)
denote the value of the Brownian motion at time t, then for any u > t given the
information at time t it must be that B (u) ∼ N (B (t) , u− t) ⇔ B (u) − B (t) ∼
N (0, u− t).

Definition 2. (Quadratic variation) Consider the discrete partition,

0 = t0 < t1 < t2 < · · · < tN = T,

where N is the number of time intervals ∆t = ti − ti−1∀i in the path. Let∑N
i=1 [B (ti)−B (ti−1)]

2
=
∑N
i=1 [∆B (ti)]

2. Consider a finer partition of the path
as N →∞, then ∆t = ti − ti−1 → 0 and

∑N
i=1 [∆B (ti)]

2 → T a.s.

Claim. Notice that the Brownian motion is a very unusual continuous function. The
usual continuously differentiable function has quadratic variation equal to zero.

Proof. Let X (t) = at for some constant a. Compute the quadratic variation∑N
i=1 [∆X (ti)]

2
=
∑N
i=1 [ati − att−i]2 =

∑N
i=1 [a (ti − tt−i)]2

=
∑N
i=1 [a∆t]

2
= a2

∑N
i=1

[
T
N

]2
= a2N

(
T
N

)2
= a2T 2

N → 0 as N →∞. �

Definition 3. (Total variation)
∑N
i=1 |B (ti)−B (ti−1)| =

∑N
i=1 |∆B (ti)| →

∞ a.s.

Why Brownian motion?
Because as we already learned, asset pricing involves martingales (Recall the Bi-

nomial model?). Furthermore, continuous processes are much more mathematically
tractable than e.g., jump processes.

Theorem. (Levy’s theorem) A continuous martingale is a Brownian motion if and
only if its quadratic variation over each interval [0, T ] equals T .

2. Ito (Difussion) Processes

Definition 4. (Ito process) Is a random variable X that changes over time as,

(2.1) dX (t) = µ (t) dt+ σ (t) dB (t) ,

where B is a Brownian motion, and µ and σ can also be random processes known
at time t.
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Adding changes over time gives,

(2.2) X (T ) = X (0) +

ˆ T

0

µ (t) dt+

ˆ T

0

σ (t) dB (t) ,

for any T > 0. An Ito process evolves continuously over time with drift µ (t) and
difussion coefficient σ (t) s.t.

´ T
0
σ (s) dB (s) ≈

∑N
i=1 σ (t− i) [B (ti)−B (ti−1)]∀i.

Intuition: Let X be some asset price (no dividends), and θ the # shares invested
in the asset portfolio. Then, the value of the asset portfolio is

´ T
0
θ (t) dX (t) ≈∑N

i=1 θ (t− i) [X (ti)−X (ti−1)] ∀i.
If we assume µ = 0 and E

[´ T
0
σ2 (t) dt

]
<∞ for each T , then the Ito process is

a continuous martingale with finite variance.

Claim. Independently of µ = 0 and var [X (t)] < ∞ the quadratic variation of a
difussion process X is lim

N→∞

∑N
i=1 [∆X (ti)]

2
=
´ T

0
σ2 (t) dt a.s.

Proof. Notice that (dt)
2

= 0, (dt) (dB) = 0, (dB)
2

= dt. If dX = µdt + σdB for
some Brownian motion B, then (dX)

2
= (µdt+ σdB)

2

⇒ µ2(dt)
2︸ ︷︷ ︸

=0

+ 2µσ(dt) (dB)︸ ︷︷ ︸
=0

+σ2 (dB)
2

= σ2dt . Integrating this from 0 to T gives

the quadratic variation,

(2.3)
ˆ T

0

(dX (t))
2

=

ˆ T

0

σ2 (t) dt.

�

In conclusion difussion processes are a very special type of continuous martingales
with different quadratic variation than a Brownian motion.

3. Ito’s Lemma

Review: Given two continuously differentiable functions y = f (x) and x = g (t)

such that y = f (g (t)), what is dy
dt ? By the chain formula of standard calculus,

dy

dt
=
dy

dx
× dx

dt
= f ′ (x (t))× g′ (t) .

Over [0, T ] the latter gives,

y (T )− y (0) =

ˆ T

0

dy

dt
dt =

ˆ T

0

f ′ (x (t))× g′ (t) dt =

ˆ T

0

f ′ (x (t))× dx (t)

≈
N∑
i=1

f ′ (x (ti)) [x (ti)− x (ti−1)] .

Definition 5. (Ito’s lemma) We define Y = f (B (t)) where B is a Brow-
nian motion. Thus, dY = f ′ (B (t)) dB + 1

2f
′′ (B (t)) dt and Y (T ) − Y (0) =´ T

0
f ′ (B (t)) dB (t) + 1

2

´ T
0
f ′′ (B (t)) dt

≈
∑N
i=1 f

′ (B (ti)) [B (ti)−B (ti−1)] + 1
2

´ T
0
f ′′ (B (t)) dt.
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Intuition: Recall from ordinary calculus that the derivative defines a linear ap-
proximation of the change in Y over some time period. A better approximation is
given by the second order Taylor series expansion,

∆y ≈ f ′ (x) ∆x+
1

2
f ′′ (x) (∆x)

2
,

y (T )− y (0) ≈
N∑
i=1

f ′ (x (ti)) ∆x+
1

2

N∑
i=1

f ′′ (x (ti)) (∆x)
2

︸ ︷︷ ︸
→0 as N→∞

.

In Ito’s calculus this is,

∆Y = f ′ (B) ∆B +
1

2
f ′′ (B) (∆B)

2
,

Recall (dB)
2

= dt so (∆B)
2 ≈ dt as

lim
N→∞

∑N
i=1 [∆B (ti)]

2
=
´ T

0
dt⇒ 1

2

´ T
0
f ′′ (B (t)) dt ≈ 1

2

∑N
i=1 f

′′ (B (ti)) (∆B)
2.

Example. Let Y = log (X) by Ito’s lemma,

dY = f ′ (X) dX +
1

2
f ′′ (X) (dX)

2
,

f ′ (X) =
1

X
, f ′′ (X) = − 1

X2
,

⇒ dY =
dX

X
− 1

2

(
dX

X

)2

.

Example. Let Y = eX by Ito’s lemma,

dY = f ′ (X) dX +
1

2
f ′′ (X) (dX)

2
,

f ′ (X) = eX , f ′′ (X) = eX ,

dY

Y
= dX +

(dX)
2

2
.

Example. Let Z = XY . Define g (x, y) = xy. Notice that dZ = ∂g
∂xdX + ∂g

∂ydY +

1
2
∂2g
∂x2 (dX)

2
+ 1

2
∂2g
∂y2 (dY )

2
+ ∂2g

∂x∂y (dX) (dY ) by Ito’s lemma for multiple processes.

And ∂g
∂x = y, ∂g∂y = x, ∂

2g
∂x2 = 0 = ∂2g

∂y2 ,
∂2g
∂x∂y = 1. Thus,

⇒ dZ = Y dX +XdY + (dX) (dY )⇒ dZ

Z
=
dX

X
+
dY

Y
+

(
dX

X

)(
DY

Y

)
.

Example. Let Z = Y
X . Define g (x, y) = x−1y. Notice that dZ = ∂g

∂xdX + ∂g
∂ydY +

1
2
∂2g
∂x2 (dX)

2
+ 1

2
∂2g
∂y2 (dY )

2
+ ∂2g

∂x∂y (dX) (dY ) by Ito’s lemma for multiple processes.

And ∂g
∂x = − y

x2 ,
∂g
∂y = 1

x ,
∂2g
∂x2 = y

x3 ,
∂2g
∂y2 = 0, ∂

2g
∂x∂y = − 1

x2 . Thus,

⇒ dZ = − Y

X2
dX +

1

X
dY +

1

2

Y

X3
(dX)

2 − 1

X2
(dX) (dY ) ,

dZ

Z
=
dY

Y
− dX

X
+

1

2

(
dX

X

)2

−
(
dY

Y

)(
dX

X

)
.
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4. Geometric Brownian Motion

We assume dS
S = µdt + σdB ⇔ dS = µSdt + σSdB. Set Y (t) = logS (t) =

g (S (t)) where g = log. Thus,

dY =
dS

S
+

1

2

(
− 1

S2

)
(dS)

2

= µdt+ σdB − 1

2S2
σ2S2dt

=

(
µ− 1

2
σ2

)
dt+ σdB.

Suppose S = asset price without dividends. Let u > t so that logS (u) −
logS (t) =continuously compounded return= r (u− t). Then, S (u) = S (t) er(u−t)

and the continuously compounded rate of return over a period of length ∆t is given
by,

ri = µ− 1

2
σ2︸ ︷︷ ︸

mean

+
σ

∆t
∆B,

with variance σ2

∆t .
Suppose now that the asset pays a constant instantaneous (at instant dt) div-

idend yield qS (t) dt. Let X (t) denote the number of shares invested in the asset
at time t, and assume reinvesting of dividends in more shares. That is, dX (t) =
X(t)qS(t)dt

S(t) = qX (t) dt and dX(t)
X(t) = qdt⇒ X (t) = X (0) eqt = eqt.

Define V (t) =value of shares invested in asset, which is equal toX (t)S (t). Thus
by Ito’s lemma,

dV

V
=
dX

X
+
dS

S
+

(
dX

X

)(
dS

S

)
︸ ︷︷ ︸

=0

= qdt+ µdt+ σdB = (µ+ q) dt+ σdB.

5. Black-Scholes-Merton Formula

Consider an European call option with maturity at time T and exercise price K.
The underlying asset pays a constant dividend yield q with price S and satisfies,

(5.1)
dS

S
= µdt+ σdB,

where µ is some general random process; σ is assumed to be constant; and B is
a Brownian motion. In this economy there is a riskless asset that pays a constant
continuously-compunded risk-free rate of return r. We also assume that there exists
some stochastic discount factor (SDF) φ̃ such that the price at date t = 0 of any
security that pays X̃ at date T is E

[
φ̃X̃
]
. The call option paysMax (0, S (T )−K)

at date T .

Definition. (Digital option) Let ỹ =

{
1
0

if S (T ) > K (in the money)
o.w.

, so

that the (digital or binary) call option pays S (T ) ỹ −Kỹ.
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That is, the payoff of a replicating portfolio comprising a long position in the
underlying risky asset and a short position in the riskless asset with value Y (t)
at date t ≤ T . Note that the replicating portfolio pays no-dividend, in the sense
that there is no cash distributed outside the portfolio. Moreover, recall that the
fundamental pricing formula is Y (0) = num (0)Enum

[
Y (T )
num(T )

]
.

We seek to answer the following:
1) What is the value at time t = 0 of getting Kỹ at date T?
Using the fundamental asset pricing formula and R as the numeraire gives

Y (0) = 1 × ER
[
Y (T )
erT

]
= e−rTKER [ỹ] = e−rTKprobR (S (T ) ≥ K), by definition

of probability.
2) What is the value at time t = 0 of getting S (T ) ỹ at date T?
Using once more the fundamental asset pricing formula and choosing V now

as the numeraire such that V (0) = S (0) and V (T ) = eqTS (T ) ⇒ Y (0) =

S (0)EV
[
S(T )ỹ
eqTS(T )

]
= e−qTS (0)EV [ỹ] = e−qTS (0) probV [S (T ) ≥ K].

Thus, the value at date t = 0 of the European call is,

(5.2) e−qTS (0) probV [S (T ) ≥ K]− e−rTKprobR [S (T ) ≥ K] .

3) Calculate probR [S (T ) ≥ K].
Recall probR [S (T ) ≥ K] = E

[
1{S(T )≥K}φ̃e

rt
]
. Use the fact that V (t)

ert is a mar-

tingale under probR. Also, V (t) = eqtS (t) and dV
V = (µ+ q) dt + σdB. Set

Z (t) = V (t)
ert ⇒

dZ
Z = dV

V −rdt by Ito’s lemma, so that Z (t) = (µ+ q − r) dt+σdB,
whereB is a Brownian motion under actual probability. Define dB∗ = dB+µ+q−r

σ dt
as the Brownian motion under the risk-neutral probability. Then Z (t) = σdB∗.

By Levy’s theorem a random process is a Brownian motion if it is a contin-
uous martingale with quadratic variation equal to T . Recall dS

S = µdt + σdB,
substituting dS

S = µdt + σ
(
dB∗ − µ+q−r

σ dt
)

= (r − q) dt + σdB∗ ⇒ dlogS (t) =(
r − q − 1

2σ
2
)
dt+ σdB∗ ⇒ logS (T ) = logS (0) +

(
r − q − 1

2σ
2
)
T + σB∗ (T ). No-

tice that S (T ) ≥ K ⇔ logS (T ) ≥ logK ⇔ logS (0) +
(
r − q − 1

2σ
2
)
T +σB∗ (T ) ≥

logK ⇔ log
(
S(0)
K

)
+
(
r − q − 1

2σ
2
)
T ≥ −σB∗ (T )

⇔ log(S(0)
K )+(r−q− 1

2σ
2)T

σ
√
T

≥ −B
∗(T )√
T

, where B∗(T )√
T
∼ N (0, 1). Thus,

probR [S (T ) ≥ K] = N

 log
(
S(0)
K

)
+
(
r − q − 1

2σ
2
)
T

σ
√
T︸ ︷︷ ︸

=d2

 = N (d2) .

4) Calculate probV [S (T ) ≥ K].
We use the fact that ert

V (t) is a martingale under probV . Set Z (t) = ert

V (t) =
R(t)
V (t) ⇒

dZ
Z = rdt− dV

V +
(
dV
V

)2
, by Ito’s lemma. So,

Z (t) = (r − µ− q) dt− σdB + σ2dt =
(
r − µ− q + σ2

)
dt− σdB. Re-arranging

terms Z (t) = −σ
(
dB − r−q−µ+σ2

σ dt
)

= −σdB∗ where dB∗ = dB + µ+q−r+σ2

σ dt.

By Levy’s theorem B∗ is a Brownian motion under probV . Recall dSS = µdt +

σdB, substituting dS
S = µdt+ σ

(
dB∗ − µ+q−r+σ2

σ dt
)

=
(
r − q + σ2

)
dt+ σdB∗ ⇒
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dlogS (t) =
(
r − q + 1

2σ
2
)
dt + σdB∗ ⇒ logS (T ) = logS (0) +

(
r − q + 1

2σ
2
)
T +

σB∗ (T ).
Notice that S (T ) ≥ K ⇔ logS (T ) ≥ logK ⇔ logS (0) +

(
r − q + 1

2σ
2
)
T +

σB∗ (T ) ≥ logK ⇔ log
(
S(0)
K

)
+
(
r − q + 1

2σ
2
)
T ≥ −σB∗ (T )

⇔ log(S(0)
K )+(r−q+ 1

2σ
2)T

σ
√
T

≥ −B
∗(T )√
T

, where B∗(T )√
T
∼ N (0, 1). Thus,

probV [S (T ) ≥ K] = N

 log
(
S(0)
K

)
+
(
r − q + 1

2σ
2
)
T

σ
√
T︸ ︷︷ ︸

=d1

 = N (d1) ,

Substituting these probabilities in equation (5.2) gives the BSM formula for the
value at time t = 0 of an European call option,

(5.3) e−qTS (0)N (d1)− e−rTKN (d2) ,

where d2 = d1 − σ
√
T .

6. Greeks, Delta Hedging, and the BSM equilibrium PDE

Definition 6. (Greeks) The derivatives of the BSM pricing formula are known as
“Greeks”. The most important greek is delta ∆ = ∂C

∂S that measures the sensitivity
of the option value to changes in the value of the underlying asset. Gamma Γ = ∂2C

∂S2

measures the sensitivity of delta to changes in the value of the underlying asset.
Theta Θ = −∂C∂t measures the sensitivity of the option value w.r.t. time with
negative sign as time-to-maturity decreases.

6.1. Delta hedging. Let dS = µSdt + σSdB where both the drift and difussion
are functions of S and t, and B is some Brownian motion. Also, C (S, T ) is the
value at date t ≤ T of an European call option on the underlying S with maturity
T . To compute the change in value of the contingent claim we replace T with T − t
and S (0) with S in the BSM formula and use Ito’s lemma,

(6.1) dC =
∂C

∂t
dt+

∂C

∂S
dS +

1

2

∂2C

∂S2
(dS)

2
.

Suppose now that you short the call, hold ∆ shares of the underlying stock and
C (S, T )−∆S in the risk free asset. Let W be the value of such hedging portfolio.
Thus, the change of the value of the hedging portfolio at instant dt is,

dW = −dC + (C (S, T )−∆S) rdt+ ∆ (dS + qSdt) ,

= −∂C
∂t
dt− ∂C

∂S
dS − 1

2

∂2C

∂S2
(dS)

2
+ (C (S, T )−∆S) rdt+ ∆dS + ∆qSdt,

(6.2) = −Θdt︸ ︷︷ ︸
(+)

−1

2
Γσ2S2dt︸ ︷︷ ︸

(−)

+ ∆qSdt+ (C (S, T )−∆S) rdt.

Note that this hedge eliminates all exposure to changes in the price of the under-
lying. On the other hand, the value of the portfolio increases as time passes with
rate −Θ. Moreover, as the payoff from the long position is always below the payoff
from the short position by convexity, then as we move far from S (t) we are worse
because we hold a short position in convexity or “Gamma”. Finally, note that the



LECTURE NOTES 4 7

perfect delta hedging strategy entails dW = 0 and rearranging terms leads to the
BSM equilibrium partial differential equation (PDE),

(6.3)
1

2
Γσ2S2dt+∆S (r − q) dt+(Θ− Cr) dt =

1

2
Γσ2S2+∆S (r − q)−Cr+Θ = 0.

7. Empirical Estimation of Option Pricing Models

After the 1987 crash it was evident that the implied volatilities from S&P 500
index options exhibited a smile or smirk not consistent with the BSM model. Call
options that were deep in the money have higher implied volatilities than those
near the money. This pattern suggests that the risk-neutral return distribution is
not log-normal but exhibits fat tails and is negatively skewed.

7.1. Heston model.
dS

S
= µ (S, ν) dt+

√
νdBS + dZS ,

dν = κ (ν̄ − ν) dt+ σ
√
ν
(
ρdBS +

√
1− ρ2dBν

)
+ dZν ,

where µ (S, ν) is the stock price and volatility dependent drift; (BS , Bν) is a vector
of independent Brownian motions in R2; ρ ∈ (0, 1) is the constant correlation
coefficient; and the processes (ZS , Zν) are jumps with intensities (i.e., arrival rates)
λS , λν , respectively. Note that the amplitudes of the jumps are random. Heston
(1993) considered the special case (λS , λν) = 0, consistent with the non-arbitrage
opportunities assumption. He showed that the square-root difussion assumption
for stochastic volatility allows computation of risk-neutral probabilities by Fourier
inversion of the characteristic function as it entails a known closed form for it.

7.2. Parametric estimation strategies.

argmin
θ∈Θ

{
ε2i,t
}
, where

εi,t ≡
Ci,t
St
−O (Xt, Ti − t, ki,t |θ ) ,

where i identifies each option in the sample with different strike prices and matu-
rities; and θ is the vector of parameters of the option pricing model used e.g., some
version of Heston’s model. The vector θ̂ can be estimated using a cross-section of
strike prices and maturities for a given day “recalibrating” the model every day.

An alternative estimation strategy is to fixed the parameters over time, group
options according to their moneyness and maturity, and adopt the following error
components structure,

εi,t = εI,t + σIηi,t for i ∈ G (I, t)

εI,t = ρIεI,t−1 + vI,t,

where G (I, t) is the set of observations for group I at date t; vI,t is a zero-mean
white noise common to all options within group I, possibly correlated across groups;
and ηi,t ∼ N (0, 1) is uncorrelated with vI,t. The error components structure can
be estimated using a Kalman filter and generalized least-squares (GLS).

Another approach is to use the simulated-moments estimator (SME) of Gallant
and Tauchen (1996), using short-term at the money (ATM) call option prices i.e.,
kt ∈ [0.97, 1.03]. Under this approach the econometrician has to make assumptions
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about the data generation process (DGP) of strike prices and contract maturities
of the ATM calls. Other strategy that have been used in the empirical literature is
the implied-state general-method-of-moments (IS-GMM),

θT = argmin
θ∈Θ

GT (θ)
T WTGT (θ) ,

GT (θ) =
1

T

∑
t≤T

h
(
st, ν

θ
t |θ
)
,

where WT is a positive semi-definite distance matrix; h is the moment generating
function; stare log-deflated (excess) returns; and νθt is the date-t option-implied
volatility.

Notice that when using GMM or ML to estimate option pricing models the
econometrician has to choose the maturity of the observed option as close as possible
to some given maturity (e.g., 30 days), subject to the constraint that the option
price is not too far out of the money. This allows standard asymptotic theory to
be directly applicable to assess the properties of the estimator.

Finally, when one or more state variables are assumed to be latent or the sto-
chastic volatility follows a multifactor process with few degrees of freedom, then one
can use a Monte Carlo Markov Chain (MCMC) estimation procedure. In general
the empirical analyses showed that,
1. the inclusion of stochastic volatility improves substantially option pric-

ing minimizing out-of-sample pricing errors, and
2. the inclusion of jumps result in a small improvement in option pricing

unless the investment horizon is sufficiently long.
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