
LECTURE NOTES 2

ARIEL M. VIALE

I. Arrow-Debreu (Pure-Exchange) Economy

In a timeless pure exchange economy under certainty, choices over commodities
are based on the utility or felicity score final consumption provides to the economic
agent. Consider now an exchange economy extending through a finite sequence
of dates t = 1, . . . , T . In moving to a multi-period economy, the availability of
commodities through time is not certain as it may depend on the realization of
some state of nature. Also, equal quantities of the commodity may result in different
felicity scores depending on the realized state of nature. Consequently, commodities
become contingent.

Uncertainty or more properly risk is defined by a finite and exhaustive set of
mutually exclusive states of nature s = 1, . . . , S. Note that time plays no explicit
role, but states of nature unfold over time. The risky economy is represented by
a history of observable events (sets of states) from date t = 1 to date t = T i.e.,
a partition St ∈ S. We assume the sequence of partitions to be monotone and
non-decreasing in fineness, mesh, or norm, that is St+1 is as fine as St. A partition
S is said to be as fine as partition S ′ and S ′ as coarse as S, if for every A′ ∈ S ′
and A ∈ S either A ⊂ A′ or A ∩A′ = ∅. Intuition: The filtration (time indexed
set of algebras) generated by St+1 is larger (carries more information) than the one
generated by St. Note that St = {S} forms an event-tree.

At each date t there is a finite set of commodities c = 1, . . . , C and a finite set
of intertemporal traders indexed by i ∈ I.

Definition 1. (Contingent commodity) For every commodity c = 1, . . . , C,
intertemporal trader i ∈ I , and state of nature s = 1, . . . , S, a unit of (state)-
contingent commodity xcsi is the ith trader’s claim to receive a unit of commodity
c if and only if state of nature s occurs such that,

(1)
I∑
i=1

xcsi = xcs.

Accordingly, the ith trader’s (state)-contingent commodity vector is

xi =

x11i, . . . , xC1i︸ ︷︷ ︸,
State 1

. . . , x1Si, . . . , xCSi︸ ︷︷ ︸
State S

 ∈ RCS (Note that a negative entry

represents an obligation to deliver the commodity). The (state)-contingent com-
modity vector can be viewed as a collection of C random variables with support
(xc1, . . . , xcS)∀c. Let the vector of exogenously determined contingent endowments
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(i.e., potential consumption) be ωi ∈ RCS+ at date t = 0. In this context, intertem-
poral traders attach a (subjective or objective?) probability πsi to the occurrance
of each state of nature s.
Weak assumption: Let Ui (xi) be some utility function representing the ith
intertemporal trader’s rational preference relation �i on xi ∈ RCS .

Theorem. (Utility representation theorem) The preference relation � has
an expected utility representation if for every s ∈ S there is a (Bernoulli state-
dependent) function us : R+ → R such that for any x, x′ ∈ RCS, x � x′ if and only
if
∑
s πsus (x) ≥

∑
s πsus (x′).

Strong assumption: At date t = 0 and before the resolution of uncertainty
forward markets for each contingent commodity are opened in the economy with
prices p̄cs. We assume perfectly competitive markets, that is every trader has
negligible market power and consequently act as price takers.

Definition 2. (State contingent economy) A state contingent or stochastic
economy is characterized by E =

{
I, S, {�i}i∈I , {ωi}i∈I

}
.

Then,

Definition 3. (Arrow-Debreu equilibrium) The pair that includes an allo-
cation x∗csi and price vector p̄cs ∈ RCS+ is an Arrow-Debreu equilibrium if and
only if for every i ∈ I, x∗csi maximizes �i subject to the budget constraint Bi ={
xcsi ∈ RCS

∣∣∣∑C
c=1

∑S
s=1 p̄cs · xcsi =

∑C
c=1

∑S
s=1 p̄cs · ωcsi

}
, and all opened mar-

kets clear
∑I
i=1 xi =

∑I
i=1 ωi satisfying Walras’ law.

Note. The solution involves the utilization of the same optimization tools of stan-
dard consumption theory under certainty. For example, one can derive the indirect
utility function, or use duality and derive the expenditure function, write the La-
grangian function and obtain a Slutsky decomposition of the intertemporal demands
from first order necessary conditions.

Proposition. Let �i be strictly convex and assume non-satiation at each date-
event, then given the price system p̄cs the optimal risk-bearing allocation x∗ics can be
attained by trading contingent commodities in perfectly competitive forward markets
at time t = 0 so uncertainty resolves ex-ante.

Crucial assumptions: Local non-satiation at each date-event implies that
intertemporal traders attach positive probabilities to all events. Local non-satiation
plus strict convexity of the preferences set guarantees the existence of a unique
global interior solution, which can be found applying Kuhn-Tucker necessary and
sufficient conditions.

Note. This is a very abstract economy. Trade across states is physically impossible.
Implicitly all individuals have the same (symmetric) information on the event-tree
and this is common knowledge. Although static in nature, the one-shot Arrow-
Debreu economy still entails implicit dynamics as uncertainty is resolved ex-ante
but trade is implemented ex-post (after state s realizes).

Theorem. (First fundamental theorem of welfare economics) A competi-
tive Arrow-Debreu equilibrium is Pareto optimal.
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Theorem. (Second fundamental theorem of welfare economics) Given a
Pareto optimal allocation, then there exists an Arrow-Debreu equilibrium that sup-
ports that allocation.

Claim. If x∗csi is Pareto optimal ex-ante, then x∗csi is Pareto optimal ex-post.

Intuition: We assume now that uncertainty resolves at period t = 1 in a two-
period economy. When period t = 1 arrives, state of nature s reveals, trade is
executed, and every intertemporal trader receives the optimal bundle x∗csi. We
assume also that before the actual consumption of x∗csi a spot market opens at time
t = 1 for ex-post trade. Would there be any incentive to trade in this market?
The answer is NO. If there were any potential gains from ex-post trading the
Arrow-Debreu equilibrium allocation can’t be Pareto optimal, contradicting the
first theorem of welfare economics. In other words ex-ante Pareto optimality implies
ex-post Pareto optimality and thus there should be no ex-post trading.

II. Radner Sequential Trading (Pure Exchange) Economy

We now allow for sequential trading in the spot markets. We assume that at t = 0
intertemporal traders have expectations about the spot prices of the contingent
commodities at time t = 1 for each possible state s ∈ S. We denote the price
vector that prevails in state of nature s as ps ∈ RC+, and the overall spot price
system by p = (p1, . . . , pS) ∈ RCS+ . Furthermore, we assume that at date t = 0
the forward market is only opened for the contingent commodity with label 1.
Think of this commodity as the store of value or purchasing power. We denote
q = (q1, . . . , qS) ∈ RS+ as the state dependent price vector of this commodity at
time t = 0.

At time t = 0, each intertemporal trader observes q ∈ RS+ and p = (p1, . . . , pS) ∈
RCS+ . Each intertemporal trader i formulates and buys a trading (equivalently a
portfolio) forward (saving/lending) plan for the store of value commodity zi =
(z1i, . . . , zSi) ∈ RS at time t = 0 , and chooses a set of consumption plans xi =
(x1i, . . . , xSi) ∈ RCS+ to buy at time t = 1 once uncertainty is revealed and contracts
regarding z are executed. Hence, the behavioral problem of the intertemporal trader
i is,

(2) Max
{zi,xi}

Ui (xi)

s.t.
∑
s qs · zsi ≤ 0

ps · xsi ≤ ps · ωsi + p1s · zsi∀s ∈ S
Notice that we have assumed zero initial endowments for the contingent com-

modities (i.e., negative sign of the budget constraint).However, we are not imposing
any restriction on the sign or magnitude of zsi. If zsi ≤ −ω1si then we can think
of the trader selling short the store of value commodity (consuming/borrowing)
at time t = 0. This possibility though is limited indirectly by the fact that con-
sumption and therefore ex-post wealth should be non-negative in every state s.
The state-dependent budget at time t = 1 is composed of the market value of the
endowment given the price vector p plus the market value of the store of value
commodity bought or sold at time t = 0.
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Key condition (Rational expectations hypothesis): We impose the
condition that expectations must be self-fulfilled or rational; that is intertemporal
traders are endowed with perfect foresight as their expectations of prices that will
clear the spot markets for each state s are correct i.e., they do actually clear the
markets at time t = 1 when state s occurs. (Note the implicit assumption in this
condition of symmetric information across traders).

Definition 4. (Radner equilibrium) The forward price vector q ∈ RS+, the
(expected) price vector ps ∈ RC+ for every s at time t = 0, plus the trading plan
z∗i ∈ RS at time t = 0, and consumption plans x∗i ∈ RCS+ at time 1 that solve the
behavioral problem (2) for all i ∈ I, and satisfy the market clearing conditions∑
i z
∗
si ≤ 0 and

∑
i x
∗
si ≤

∑
i ω
∗
si for every state s is a Radner equilibrium.

Note. In the more realistic Radner economy as trade takes place sequentially the
intertemporal traders face a sequence of contingent budget sets at every date-event.
In this regard, the equilibrium is viewed as a pseudo equilibrium of expectations,
prices, and plans in the economy. If the set of all traders’ expectations are based
on current market conditions we say that the pseudo equilibrium is a correct expec-
tations equilibrium allowing divergence of opinion about the future across traders.
When (subjective) opinions about the future coincide with the actual (objective)
outcome then we say that the equilibrium is a rational expectations equilibrium.
When the set of all traders’ expectations are based on past and current market
conditions the pseudo equilibrium is a temporary equilibrium with adaptive expec-
tations.

Convention. Commodity 1 can be seen as the numeraire of the Radner economy.
Intuition: Note that all the budget constraints are homogeneous of degree zero

with respect to prices i.e., the budget sets remain the same if the price of one
commodity in each date-state is arbitrarily normalized to equal 1. Lets say that we
chose to normalize the first commodity (as we actually did). Then for every state
s a unit of commodity 1 pays off 1 dollar in state s and p1s = 1. For time t = 0 we
can convene that q1 = 1 and maybe

∑
s qs = 1. Thus, in the Radner economy the

store of value commodity is the numeraire (the standard by which the values of the
rest of the contingent commodities can be measured). We left deliberately open
the issue of what type of commodity actually represents the numeraire, besides the
fact that it has to be suitable to be stored (not perishable).

Proposition. (i) If the pair that includes the allocation x∗ ∈ RCSI and price vector
p̄ ∈ RCS++ constitutes an Arrow-Debreu equilibrium, then there exists a price vector
q ∈ RS++ and trading plan z∗ ∈ RSI for the numeraire such that {x∗, z∗, q, p̄},
constitute a Radner equilibrium.

(ii) Conversely, if the plans x∗, z∗ and prices q, p constitute a Radner equilibrium,
then there exists a vector of multipliers µ = (µ1, . . . , µS) ∈ RS++ such that the
allocation x∗and price vector p · µ ∈ RCS++ constitute an Arrow-Debreu equilibrium
(Think of the multipliers as shadow state prices).

1. Asset Markets. Notice that at the end we convene that the shopping basket
of the ith intertemporal trader at time t = 0 collapses to a contingent claim to
receive/deliver z1i units of commodity 1 if state 1 realizes, z2i units of commodity
1 if state 2 realizes,. . ., and zSi units of commodity 1 if state S realizes. The total
cost of the trading-consumption plan is q1z1i+ · · ·+qSzSi. Realistically, transfering
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wealth across states is hard in physical markets. Hence, we define a unit of an asset
or market security as a title or claim to receive/deliver either physical goods or
dollars at time t = 1 in amounts that depend on which state s realizes. The payoffs
of these assets at time t = 1 are labeled as returns. If the returns are denominated
in physical goods the asset is said to be real. If the returns are denominated in paper
money the asset is said to be financial. For simplicity, we assume that payoffs are
denominated in units of the numeraire. Since there is a single good (the numeraire)
in each state available at the two dates, we can include date t = 0 as state s = 0
and re-define the commodity space as RS+1. Moreover, given non-satiation it must
be that xi ∈ RS+1

+ .
We assume competitive asset markets, that is every trader has negligible market

power and consequently act as a price taker, there are no position limits or short
sale constraints, there are no transaction costs such as bid-ask spreads, and no
indivisibilities such as a minimum amount to trade. The financial contracts have
objectively stated conditions, which are the same for all traders, and are assumed
to be perfectly monitored and enforced.

Definition 5. (Asset) With some abuse of notation we define an asset as a claim
at time t in event A that entitles the ith trader to receive (a duty to deliver if the
amount is negative) an amount ztτ (A,A′) of numeraire in the market at time τ
contingent on event A′. Note that τ = t = 0 defines the spot market, whereas
τ > t = 1 defines the forward market.

Definition 6. (Asset return) The amount of numeraire received/delivered at
time t = 1 is the return Rs of the asset at date t = 1 if state s ∈ S occurs. An
asset therefore can be characterized by its return vector R = (R1, . . . , RS) ∈ RS .

Definition 7. (Riskless asset) A riskless asset is the one that entitles a unit of the

numeraire independently of what state realizes i.e., Rf =

1, 1, . . . , 1︸︷︷︸
s

, . . . , 1

.

Definition 8. (Pure asset) A pure asset or primitive Arrow-Debreu security of
the sth type is a claim to receive a unit of the numeraire if state s realizes and

nothing otherwise i.e, R =

0, 0, . . . , 1︸︷︷︸
s

, . . . , 0

⇔ zs = 1.

Intuition: This concept will allow the logical decomposition of assets into port-
folios of pure securities.

For each pair of dates t, τ such that τ > t, and each (state)-contingent commodity
c, there is a structure of K assets freely traded in the markets at time t with vector
of returns Rk ∈ RK . The asset structure corresponds to a given family of events
Atτ , which is either empty or equal to some partition of the state space S. In the
later case, note that Sτ must be as fine (less coarse) than Atτ . In words, if at date
t each trader can trade to deliver at date τ contingent on event A′, then at a later
date τ > v > t the trader can do the same. This is the no regret principle (dynamic
consistency condition).

Definition 9. (Allowable asset) We say that an asset is allowable if for A ∈ St,
A′ ∈ Atτ , A′ ⊆ A there is some positive constant n such that ztτ (A,A′) ≤ n.
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Definition 10. (Asset portfolio) A trade plan or portfolio z for the ith intertem-
poral trader is the (column) vector of assets zi =

(
z1i , . . . , z

K
i

)T∈ RKof k allowable
assets with cost q1z1i + · · ·+ qKzKi at time t = 0 and return(

z1i r1 + · · ·+ zKi rK
)
∈ RSat time t = 1.

Definition 11. (Radner equilibrium with assets) The price vector
q =

(
q1, . . . , qK

)
∈ RK+ for the K assets traded at time t = 0, the vector of

(expected) spot prices ps = (p1s, . . . , pCs) ∈ RC+ for every s at time t = 1, the
portfolio strategy at time t = 0 z∗i ∈ RK , and the consumption plans x∗i ∈ RS+1

+ at
time t = 1 that solve the behavioral problem of each ith intertemporal trader,

(3) Max
{zi,xi}

Ui (xi)

s.t.
∑
k qkzki ≤ 0

psxsi ≤ psωsi +
∑
k

p1sz
k
i Rsk ∀s

and satisfy the market clearing condition
∑
k z

k∗
i ≤ 0 for every asset k and state

s, and allocation feasibility constraint
∑
i x
∗
si ≤

∑
i ω
∗
si is a Radner equilibrium.

Recall that p1s = 1. The budget constraint represents the wealth of trader i at
state s composed of the market values of her endowment and investment portfolio.

Note. The Radner equilibrium of the economy E (�, ω,R) with asset markets seems
to be (formally) equivalent to the one with contingent commodities E (�, ω, 1S)
where 1S denotes the identity matrix with size S × S. Buying one unit of asset zki
with vector return Rk and price qk should be equivalent to buy a (state)-contingent
trading-consumption plan zi with unit return and price vector q. At this point,
the relevant question is if there exists some price vector q that makes buying asset
k equivalent to buy the trading-consumption plan zi for all i ∈ I? Also, are
there enough assets in the asset structure K to reproduce any plausible contingent
trading-consumption plan z?

Remark. (Two-fund separation) In exchange economies with separable-homothetic
preferences, if the utility functions are weakly separable across states (i.e., the
aggregate spot market demands for the c contingent commodities in each state s
depend only on the aggregate income in each state) and identically homothetic
within states then the equilibrium vector of (expected) spot prices can be obtained
independently of (before) the equilibrium analysis of the financial markets is carried
out (we can fix these prices and proceed with the analysis in the financial markets
like we did in the Lecture notes #1).

Definition 12. (Return matrix) The return matrix R of an asset structure is
defined as an S ×K matrix with kth column equal to the return vector of the kth
asset, and generic sk entry Rsk (the return of asset k in state s),

R =


R11 R12 · · · R1K

R21 R22 · · · R2K

...
...

. . .
...

RS1 RS2 · · · RSK

 .
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LetW be the matrix of asset payoffsW = W
(
qk, R

)
=

[
−qk
R

]
. Then the bud-

get set can be re-written as B
(
qk, ωi, R

)
=
{
xi ∈ RCS+ |xi − ωi = W · zi, zi ∈ RK

}
.

The intertemporal trader i chooses portfolio zi such that xi − ωi = W · zi (i.e., to
finance xi).
Important Implication for Empirical Applications: The knowledge of R
suffices to place significant restrictions on the asset price vector
qk =

(
q1, . . . , qK

)
∈ RK that may arise in a Radner equilibrium.

Definition 13. (Arbitrage portfolio) the portfolio strategy zi ∈ RK is an ar-
bitrage given the price vector qk if and only if Wzi > 0 ∀i ∈ I . That is, a free
lunch.

Definition 14. (Arbitrage-free price vector) If there is no arbitrage portfolio
given the price vector qk, then we say that the price vector qk is arbitrage-free with
respect to R.

Note. The absence of arbitrage is equivalent to the fundamental principle of no free
lunch in economics -what Koopmans (1951) called as the impossibility of the land
of Cockaigne. Notice that is a more primitive concept than market equilibrium, in
the sense that it is independent of the characteristics of the intertemporal traders,
and depends only on the technology of the asset structure. It is a stronger condition
than the law of one price. That is, the law of one price is implied by the absence
of arbitrage opportunities but not the other way. It seems that the arbitrage-free
price vector concept first appeared in a paper by von Neumann in 1937.

Definition 15. (Market subspace) The set of all wealth transfers or income wi
that can be obtained by trading assets in the markets is a (linear) subspace of RS+1

denoted by 〈W 〉. That is, the set of all opportunities for risk-sharing offered by the
financial markets,

(4) 〈W 〉 =
{
w ∈ RS+1

∣∣w = Wz, z ∈ RK
}
.

Remark. The absence of arbitrage opportunities can be represented geometrically
as the crossing of the (linear) market subspace 〈W 〉 with the non-negative orthant
RS+1

+ at the origin i.e., 〈W 〉 ∩ RS+1
+ = {0}. That is, wealth cannot be obtained in

some state without giving it up in another state.

Theorem. (First fundamental theorem of asset pricing) Assume that the
vector of asset prices qk is arbitrage-free. Then for every column vector qk ∈ RK of
asset prices arising in a Radner equilibrium we can find a row vector of multipliers
µ = (µ1, . . . , µS) ≥ 0 such that qk =

∑
s µsRsk for all k (qT = µ · R in matrix

notation).

Proof. Note that an arbitrage-free price row vector qk implies 〈W 〉 ∩ RS+1
+ = {0}.

Since both 〈W 〉 and RS+1
+ are convex sets and the origin belongs to 〈W 〉, we apply

the separating hyperplane theorem to obtain a non-zero vector µ′ = (µ′1, . . . , µ
′
S)

such that µ′ · w ≤ 0 for any w ∈ 〈W 〉 and µ′ · w ≥ 0 for any w ∈ RS+. Note that
it must be that µ′ ≥ 0. Moreover, because w ∈ 〈W 〉 ⇒ −w ∈ 〈W 〉, it follows that
µ′ · w = 0 for any w ∈ 〈W 〉.

Note now that if qT is not proportional to µ′ · R ∈ RK then we can find a
z ∈ RKsuch that q · z = 0 and µ′ ·Rz > 0 (i.e., an arbitrage portfolio). But w = Rz
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and µ′ ·w 6= 0, which can’t be. Therefore, it must be that in an arbitrage-free market
qT = αµ′ · R for some real number α > 0. Finally, if µ = αµ′ then qT = µ · R as
required. �

Remark. The pricing function qT = µ · R or system of K present-value equations
with S µs unknowns, is not unique as we can rotate the hyperplane orthogonal to
the state price vector around the linear market subspace as long as does not cut
into the positive orthant of free lunches. By doing so, we can define a whole range
of pricing functions.

Remark. Geometrically the existence of a positive vector of state prices satisfy the
condition 〈W 〉⊥ ∩ RS+1

++ 6= ∅.

Definition 16. (Market completeness I - easy definition but only true for
the (one-commodity) two period economy) An asset structure with an S×K
return matrix R is complete if the rank of R = S. That is, if there is some subset of
S assets that spans the partition Sτ i.e., Sτ = Atτ . By span we mean the creation
of assets from a linear combination of pure Arrow-Debreu securities.

Note. Recall that the rank of a matrix is the maximum number of linearly inde-
pendent rows in the matrix.

Definition 17. (Market completeness II - rigorous general definition) Let
the market subspace 〈W 〉 be arbitrage free. If the market subspace has maximal
dimension S then the markets are complete, otherwise they are said to be incomplete
i.e., RS+1 = 〈W 〉⊕〈W 〉⊥ ⇒ S+1 = dim 〈W 〉+dim 〈W 〉⊥ ⇒ dim 〈W 〉 ≤ S+1−1 =
S.

Proposition. Suppose that the asset structure is complete. Then:
(i) If x∗ ∈ R(S+1)I and (p1, . . . , pS) ∈ RS+1 constitute an Arrow-Debreu equilib-

rium, then there exist an asset price vector qk ∈ RK and portfolio plan z∗ ∈ RKI
such that the optimal consumption plans, portfolio plans, vector of asset prices, and
spot prices constitute a Radner equilibrium.

(ii) Conversely, if the consumption plans x∗ ∈ R(S+1)I , portfolio plan z∗ ∈ RKI
, and price vectors qk ∈ RK , (p1, . . . , pS) ∈ RS+1 constitute a Radner equilibrium,
then there exists a unique vector of multipliers (µ1, . . . , µS) ∈ RS such that the
optimal consumption plans, and the price vector (µ1p1, . . . , µSpS) ∈ RS+1 constitute
an Arrow-Debreu equilibrium.

Theorem. (Second fundamental theorem of asset pricing) The vector of
multipliers µ = (µ1, . . . , µS) ≥ 0 such that qk =

∑
s µsRsk for all k (qT = µ · R in

matrix notation) is unique if the market is complete.

Proof. From assuming that the market subspace 〈W 〉 is arbitrage-free it follows
that it is complete if and only if it is a hyperplane, meaning that its orthogonal
subspace is one-dimensional, a condition that clearly implies the uniqueness of the
state price vector as required. �

Intuition: By definition of market completeness, the opportunities for wealth
transfers across states are the greatest when markets are complete as dim 〈W 〉 = S.
On the other hand, this means that the (potential) differences of opinion among
agents about present values are the smallest as it must be that dim 〈W 〉⊥ = 1,
and every i ∈ I coincides in their shadow state prices µ1 = · · · = µI = µ. On
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the other hand, when markets are incomplete opportunities are not that great as
dim 〈W 〉 < S and the intertemporal traders’ opinions on the shadow prices will
diverge as dim 〈W 〉⊥ = S −K + 1 > 1 i.e., trading in the market no longer forces
the traders’ state price vector to coincide.

Proposition. Suppose that the consumption plans x∗ ∈ R(S+1)I , portfolio plans
z∗ ∈ RKI , and vector of prices q ∈ RK , (p1, . . . , pS) ∈ RS+1 constitute a Radner
equilibrium with an asset structure with return matrix R. Let R′ be the S × K ′

return matrix of a second alternative asset structure. If the market subspace 〈w′〉
spanned by R′= market subspace 〈w〉spanned by R, then x∗ ∈ R(S+1)I is still the
Radner equilibrium of the economy with the second asset structure.

Definition 18. (Redundant asset) We say that an asset is redundant if its
deletion does not affect the market subspace 〈w〉. That is, the return vector of a
redundant asset is a linear combination of the return vectors of the remaining assets
i.e., a replicating portfolio.

Example. (The Binomial Model)
The asset structure in the (one-period) economy is composed of:
1) a riskless asset with constant rate of return r continuously compounded (think

of this return as the risk free rate),
2) a risky asset with initial price S0 and price {Sd, Su} at time τ = 1,
(A1) Su > Sd,
(A2) no dividends,
Hence we define u as the up state and d as the down state,
3) a call option on the risky asset with strike price equal to K and payoffs,
Cu = Max (0, Su −K) in the up state, and
Cd = Max (0, Sd −K)in the down state,
(A3) Su

S0
> erτ > Sd

S0
. No free lunches in the economy (No-arbitrage princi-

ple). If the return on the stock were greater than the risk-free rate in both states,
then we can buy an infinite amount of the stock on margin. Conversely, if the
return on the stock were less than the risk-free rate in both states, then we can
short an infinite amount of the stock and put the proceeds in the riskless asset.

Are markets complete in this economy?
Is the call option a redundant asset?
YES and YES. The rank of the return matrix R = 2 = # states in the economy.

Why? because the call option is a redundant asset by definition: its return is a
linear combination of the return vectors of the remaining assets and its deletion
does not affect the market subspace 〈w〉. We show that the return vector of the
call option can be mimic by a replicating portfolio conformed by the riskless and
risky asset.

Find the arbitrage-free price C0.
Define δ = Cu−Cd

Su−Sd ⇒ δ (Su − Sd) = Cu − Cd ⇒ δSu − Cu = δSd − Cd
Trading plan = Buy δ shares of the risky asset at time t = 0 on margin. That

is, borrow e−rτ (δSu − Cu).
At date T either we have (value of the delta shares - dollars we owe),
δSu − (δSu − Cu) = Cu if the up state occurs, or
δSd − (δSd − Cd) = Cd if the down state occurs.
The arbitrage free price of a call option is the one that makes δS0 = e−rτ (δSu − Cu)

i.e., cost of delta shares should be equal to the amount of dollars borrowed.
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Define the state prices πu = S0−e−rτSd
Su−Sd and πd = e−rτSu−S0

Su−Sd . That is πu pays 1
if the up state realizes and 0 otherwise, and πd pays 1 is the down state realizes and
0 otherwise (Do you see it?).1 These are prices of pure Arrow-Debreu securities
by definition. Given market completeness we can decompose the asset structure
as a system of linear combinations of pure Arrow-Debreu securities, Assuming no
arbitrage opportunities, there should exist positive state prices and the price of any
security is the sum across states of its payoff times the state price:
C0 = πuCu + πdCd,
S0 = πuSu + πdSd, and
1 = πue

rτ + πde
rτ .

The next step in the analysis is to manipulate the state prices to obtain expec-
tations. Define the (objective) probabilities pu= probability of up state, and pd=
probability of down state. Note that the measure of the expectation is based on
the risky asset.

Define the state price densities as φu = πu
pu

and φd = πd
pd
.

Solving for the state prices and substituting the resulting values in the asset
structure gives,
C0 = φupuCu + φdpdCd,
S0 = φupuSu + φdpdSd, and
1 = φupue

rτ + φdpde
rτ .

By definition of expected value,
C0 = E

[
φ̃C̃
]
,

S0 = E
[
φ̃S̃
]
, and

1 = E
[
φ̃erτ

]
.

Finally, by properties of expected values,
⇒ 1 = E

[
φ̃ C̃
C0

]
,

⇒ 1 = E
[
φ̃ S̃
S0

]
, and

1 = E
[
φ̃erτ

]
.

Note that φ̃ is the stochastic discount factor or pricing kernel. Recall that arbi-
trage pricing pins down to find a suitable specification for the stochastic discount
factor or pricing kernel. Moreover, the no-arbitrage principle is the sufficient as-
sumption to obtain this result as guaranteed by the fact that πu > 0 and πd > 0
(First fundamental theorem of asset pricing).

Alternatively, we can define expectations on the risk neutral measure. That
is the one based on the risk free asset. Thus, we define risk-neutral probabilities
qu = erτπu and qd = erτπd (a risk-neutral measure - the certainty equivalents (CEs)
measure of microceconomics). Does the multipliers of the Arrow-Debreu/Radner
economies ring a bell? Solving for the state prices and substituting the resulting
equations in the asset structure gives,
C0 = que

−rτCu + qde
−rτCd = e−rτEQ

[
C̃
]

S0 = que
−rτSu + qde

−rτSd = e−rτEQ
[
S̃
]
and

1From 1 = S0−e−rτSd
Su−Sd

erτ + e−rτSu−S0
Su−Sd

erτ ⇒ 1) up state : S0−0
Su−0

erτ + S0−S0
Su−0

erτ = S0
Su

erτ +

0 = e−rτSu
Su

erτ = 1; 2) down state : S0−S0
0−Sd

erτ + 0−S0
0−Sd

erτ = 0 + −e−rτSd
−Sd

erτ = 1.
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1 = qu + qd,
where EQ [·] denotes the expectational operator under the risk-neutral measure.

The subjective stochastic discount factor is unique because all intertemporal traders
face the same riskless asset and the market is complete. By definition, if a stochastic
process M satisfies the condition Mt = Et [Mτ ]∀t, τ , then M is a martingale.
Clearly C̃, S̃ are martingales. Risk-neutral pricing is equivalent to the martingale
approach to pricing.

2. Incomplete Markets. What happens to our theoretical construction if dim 〈W 〉 <
S?

The first consequence is to the Radner equilibrium. In incomplete markets wealth
transfers across states are limited, and then there might be some loss of wealth
and the Radner equilibrium most likely will not be Pareto optimal. In this case,
there may exist some alternative reallocation of consumption that will make all
intertemporal traders at least as well off, and at least one consumer strictly better
off than the pseudo equilibrium allocation.

Important: This does not imply that a welfare authority equipped with a social
function can achieve the Pareto optimum. An allocation that cannot be Pareto
improved by such an authority is a constrained Pareto optimum.

Definition 19. (Constrained Pareto optimum) The asset allocation z ∈ RKI
is a constrained Pareto optimum if it is allowable (i.e.,

∑
i zi < 0) and if there is

no other allowable asset allocation z′ ∈ RKI such that U∗i (z′) ≥ U∗i (z)∀i with at
least one inequality strict.

Proposition. (Third theorem of welfare economics) Suppose that there are
two periods and only one consumption good in the second period. Then any Radner
equilibrium is a constrained Pareto optimum in the sense that there is no possible
redistribution of assets in the first period that leaves every trader as well off and at
least one trader strictly better off than before.

This is Arrow’s impossibility theorem extended to Radner economies.

Example. (The Trinomial Model)
The asset structure in the economy is composed of:
1) a riskless asset with constant return r continuously compounded (think of this

return as the risk free rate),
2) a risky asset with initial price S0 and price {Sd, Sm, Su} at time τ = 1,
(A1) Su > Sm > Sd,
(A2) no dividends,
Hence u is the up state, m is the middle, mean, median state, and d is the down

state,
(A3) Either Su

S0
> erT > Sm

S0
> Sd

S0
or Su

S0
> Sm

S0
> erT > Sd

S0
. No free lunchs in

the economy (No-arbitrage principle).
State prices πu, πm, and πd must satisfy,
S0 = πuSu + πmSm + πdSd, and
1 = πue

rT + πme
rT + πde

rT .
In the binomial case, the system of equations can be solved uniquely for πu

and πd. However, in the trinomial case we have only two equations and three un-
knowns. Thus, there exists many plausible solutions. We can take a particular
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solution and define risk-neutral probabilities as in the binomial case example. Al-
ternatively, we can define probabilities using the stock as numeraire and value the
call option. Anyways, the resulting value will depend on the particular solution we
choose (πu, πm, πd). There will be many arbitrage free values for the call option.

To see this, consider the replicating portfolio of a dollars invested in the riskless
asset and b dollars invested in the stock. The value of the portfolio at time τ will
be aerτ + bSxS0

where x = {u,m, d} . To replicate a call option with strike price K
we need,
aerτ + bSuS0

= Max (0, Su −K) , and
aerτ + bSmS0

= Max (0, Sm −K) , and
aerτ + bSdS0

= Max (0, Sd −K) .
These is a system of three equations and two unknowns. For any strike price

between Su and Sd none of the equations is redundant and the system has no
solution. As the rank of the return matrix R <# states, the market is incomplete.

Is the call option still a redundant asset? NO.
Moreover, we cannot price the call option using arbitrage pricing. If we pick

a particular solution (πu, πm, πd) and assume that the market uses this solution
to price the call option it will be just one of many plausible ad-hoc solutions.
Equivalently, we can assume that the market uses a particular set of risk neutral
probabilities (qu, qm, qd). In order to avoid arbitrary solutions, we would have
to go back and assume something about the preferences and endowments of the
intertemporal traders or RA and get an equilibrium solution. In other words, still
we can use equilibrium theory to price the call option!

References

[Arrow (1963) Review of Economic Studies]
[Arrow and Hahn (1971) General competitive analysis. ]
[Debreu (1959) Theory of value]
[Debreu (1982) Handbook of Mathematical Economics]
[Hahn (1982) Handbook of Mathematical Economics]
[Hirshleifer (1965, 1966) Quarterly Journal of Economics]
[Radner (1968, 1972) Econometrica]
[Radner (1972) Econometrica]
[Radner (1982) Handbook of Mathematical Economics]
[Ross (1978) Journal of Business]


