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1. Incomplete Information and Learning in Asset Pricing

1.1. Filtering theory, Kalman-Bucy filter, and Markov chains. Unlike en-
gineers, economists use the term “signal” from the standpoint of the “receiver” not
the “sender”. Assume the complete probability space (Ω,=, P ), where the filtering
problem of the “receiver” is to estimate a hidden process X from the observations of
another process Y (i.e., the signal). The goal is to estimate the conditional expec-
tation Et

[
f (Xt)

∣∣FYt ], where {FYt } is the filtration generated by Y augmented by
the P -null (i.e., negligible) sets in =, and f is some arbitrary real-valued function
satisfying weak regularity conditions. Note that by solving the filtering problem,
the “receiver” also obtains the distribution of Xt conditional on the filtration FYt
generated by Y . The filtration FYt is an increasing sequence (i.e., ordered set) of
collection of events (the σ-fields or σ-algebras) where some measure (the probabil-
ity of the event) is defined. Intuitively, the filtration F encodes all the information
in the data up to time t (without memory). Let W be an n-dimensional Wiener
process on its own filtration Ft generated by (Xs,Ws; s ≤ t) and augmented by
the P -null sets in =. We assume that Ft is independent of the filtration gener-
ated by(Wυ −Wu; t ≤ u ≤ υ ≤ T ), which means that future changes in the Wiener
process cannot be predicted by X. In a nutshell, we assume that all processes are
{Ft}-adapted and the Wiener processW creates all the noise that must be “filtered”
from the observation process Y . Thus,

(1.1) dYt = κtdt+ dWt; Y0 = 0,

where κt is some jointly measurable Rn-valued process satisfying the “Mean-Square-
Integrability” condition Et

´ T
0
‖κt‖2 dt < ∞. Furthermore, assume that X takes

values in some complete separable metric space and,

(1.2) dft = gtdt+ dMt,

where gt is some jointly measurable process andM is a right-continuous Martingale
satisfying the usual technical mean-square integrability condition. The innovation
process is defined as,

(1.3) dZt = dYt − κ̂tdt,
= (κt − κ̂t) dt+ dWt, Z0 = 0.

Note that the innovation, shock or surprise in Y consists of two parts: 1) the
estimation error in the drift κt; and 2) the white noise dW . Following standard
filtering theory:
(A.1) The innovation process Z is an

{
FYt
}
-Brownian motion. That is, Z is

a martingale and the innovations dZ are “unpredictable”.
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(A.2) For any separable L2-bounded
{
FYt
}
-martingaleK, ∃ a jointly measurable

{
FYt
}
-

adapted Rn-valued process ψ satisfying the mean-square-integrability
condition and,

dKt =

n∑
i=1

ψitdZ
i
t .

That is the process Z spans the
{
FYt
}
-martingales.

(A.3) ∃ a jointly measurable adapted process αi such that d
[
M,W i

]
t

= αitdt
for i = 1, . . . , N . In plain words, the square-bracketed processes are
absolutely continuous, although maybe independent, which in that case
results in αi = 0 ∀i.

(A.4) f̂ evolves as,

(1.4) df̂t = ĝtdt+
(
f̂κt − f̂tκ̂t + α̂t

)′
dZt,

where f̂κt = Et
[
ftκt FYt

]
; and

(
f̂κt − f̂tκ̂t

)
is the covariance between

ft and κt. This is the general filtering formula in which the estimate f̂
is updated each period because f is expected to change given ĝtdt and
the new information conveyed by dZ. Notice that the general filtering
formula generalizes the linear prediction formula x̂−x̄ = cov(x,y)

var(y) (y − ȳ).

Kalman-Bucy-filter
Assume X is distributed as a Normal variate with varance σ2 such that,

dXt = aXtdt+ dBt,

dYt = cXttdt+ dWt,

where B and W are independent real-valued Brownian motions independent of X0.
In this case the distribution of Xt conditional on FYt is Normal with deterministic
variance Σt and,

dX̂t = aX̂tdt+ cΣtdZt,

dZt = dYtdt− cX̂tdt.

The state and observation equations represent the filtering problem in state space
form.

Two-state-Markov-Chain
We drop Normality and assume,

dXt = (1−Xt−) dN0
t −Xt−dN

1
t ,

where Xt− ≡ lims↑tXs and the N i are independent Poisson processes with pa-
rameters λi independent of X0. Intuitively, X stays in each state an exponentially
distributed amount of time with λi denoting the transition from state i to state j.
Thus now,

gt = (1−Xt−)λ0 −Xt−λ
1,
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dMt = (1−Xt−) dM0
t −Xt−dM

1
t ,

where M i
t = N i

t − λit is a martingale. Assume,

dYt = κX (Xt−) dt+ dWt,

where W is a n-dimensional Brownian motion independent of N i and X0. Note
also that the drift κ is now conditional on the state Xt−. Thus, we write πt for
X̂t denoting the conditional probability that Xt = 1. Then the general filtering
formula is now,

dπt =
[
(1− πt)λ0 − πtλ1

]
dt+ πt (1− πt) [κ (0)− κ (1)]

′
dZt,

dMt = (1−Xt−) dM0
t −Xt−dM

1
t ,

where the innovation process has dynamics (Wonham, 1965),

(1.5) dZt = dYt − [(1− πt)κ (0) + πtκ (1)] dt.

Note that [κ (0)− κ (1)] is the “gain” vector c of the Kalman-Bucy filter and
πt (1− πt) is the variance of the Kalman-Bucy filter conditional on FYt .

1.2. Markov chain models of pure exchange economies. Assume a pure ex-
change economy a la Lucas in which assets (i.e., trees) are in fixed supply and the
behavioral economic problem of the RA is to allocate consumption given assets’
dividends (i.e., fruit). Following Veronesi (1999, 2000), we assume that there is a
single risky asset with supply normalized to one and paying dividends at the rate
D such that,

dDt

Dt
= αD (Xt−) dt+ σDdW

1,

where X is a two-state Markov chain mimicking the dynamics of the real business
cycle. That is, the economy is assumed to switch between a good and bad economic
regime at exponentially distributed times; andW 1 is a real-valued Brownian motion
independent of X0. Investors observe the dividend rate D, but do not observe the
state vector Xt−, which determines the growth rate of dividends. Also, assume that
investors observe the process,

dKt = αK (Xt−) dt+ σKdW
2,

whereW 2 is another real-valued Brownian motion independent ofW 1and X0. This
process sumarizes any other information investors may have about the state of the
economy. Thus, the filtering equations in this model depend on two innovation
processes i.e., Z =

(
Z1, Z2

)
given that,

(1.6)
dDt

Dt
= [(1− πt)αD (0) + πtαD (1)] dt+ σDdZ

1,

and,

(1.7) dKt = [(1− πt)αK (0) + πtαK (1)] dt+ σKdZ
2.
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And the conditional probability of the good (normal) regime corresponding to
good economic times evolves as,
(1.8)

dπt =
[
(1− πt)λ0 − πtλ1

]
dt+πt (1− πt)

[
αD (1)− αD (0)

σD
dZ1 +

αK (1)− αK (0)

σK
dZ2

]′
.

The three equations form a Markovian system in which the growth rate of divi-
dends is stochastic.

Assume an infinitely lived RA who maximizes expected discounted utility of
consumption with subjective discount rate β. Then, in equilibrium the RA should
consume the aggregate dividend and the price of the asset will be determined by
her marginal rate of substitution,

(1.9) St = E

[ˆ ∞
t

e−β(s−t)u′ (Ds)

u′ (Dt)
Dsds |πt, Dt

]
.

In the special case of logarithmic utility (myopic RA) asset returns are given by,

(1.10)
dSt
St

= [(1− πt)αD (0) + πtαD (1)] dt+ σDdZ
1.

This special case corresponds to the earlier literature that studied asset pricing
under incomplete information. The more interesting case is the one of a RA with
a power utility function u (c) = cγ/γ (constant relative risk aversion). In this case,

(1.11) Dγ
s = Dγ

t e
γ
´ s
t {[αD(Xa−)−σ2D/2]da+σDdW 1

a},

and,

(1.12) St = D1−γ
t E

[ˆ ∞
t

e−β(s−t)Dγ
s ds |πt, Dt

]

= D1−γ
t

{
(1− πt)E

[ˆ ∞
t

e−β(s−t)Dγ
s ds |Xt− = 0, Dt

]
+ πtE

[ˆ ∞
t

e−β(s−t)Dγ
s ds |Xt− = 1, Dt

]}

= D1−γ
t

{
(1− πt)E

[ˆ ∞
t

e−β(s−t)eγ
´ s
t {[αD(Xa−)−σ2D/2]da+σDdW 1

a}ds |Xt− = 0, Dt

]
+

+πtE

[ˆ ∞
t

e−β(s−t)eγ
´ s
t {[αD(Xa−)−σ2D/2]da+σDdW 1

a}ds |Xt− = 1, Dt

]}
.

Note that given the time-homogeneity property of the Markov system [1.6-1.8],
conditional expectations are independent of time. We write C0 and C1 for the
above conditional expectations during bad and good economic times respectively
and we have,

St = Dt

{
(1− πt)C0 + πtC

1
}
,

with returns,

(1.13)
dS

S
=
dD

D
+

(
C1 − C0

)
dπ

(1− π)C0 + πC1
+

(
C1 − C0

)
d (D,π)

D [(1− π)C0 + πC1]
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(1.14)

= something dt+σDdZ
1+

[(
C1 − C0

)
π (1− π)

(1− π)C0 + πC1

]
×
[
αD (1)− αD (0)

σD
dZ1 +

αS (1)− αS (0)

σS
dZ2

]
.

The factor,

(1.15)

[(
C1 − C0

)
π (1− π)

(1− π)C0 + πC1

]
introduces stochastic volatility in the stock return equation. Thus stochastic volatilty
can arise in a model with constant dividend volatility. Note that the conditional
variance of the state π (1− π) is largest when πt = 1

2 as the RA is uncertain about
the state of the economy. Thus, the volatility of the asset is linked to investors’
confidence about future economic growth.

Veronesi (1999) assumes that the level of dividends follows an Ornstein-Uhlenbeck
process with the RA endowed with a negative exponential utility function (i.e.,
constant absolute risk aversion). The model is capable of explaining most of the
empirical puzzles in the asset pricing literature including the nonlinear relation
between the drift and variance of stock returns. One controversial implication of
the model though, is the result in Veronesi (2000), where there is no premium for
“noisy” signals given the hedging demands of investors. Thus, the quality of the
signal (proxied by its precision or the inverse of the standard deviation) does not
seem to add to systematic risk. Thus investors “overreact” to bad news during good
economic times and “underreact” to good news during bad economic times.

Ozoguz (2009) and Zhang (2003), are two studies that assess the empirical capa-
bilities of the model of Veronesi (1999). They derive the fundamental asset pricing
equation of the economy as a conditional scaled CAPM, with the conditional prob-
ability of good economic times as the scaling variable. The unconditional asset
pricing equation in beta regression form includes additional factors beyond market
beta related to: 1) “learning” proxied by changes in the conditional probability πt;
and 2) UC = π (1− π) proxying for investors’ “uncertainty” about the state of the
economy. In a nutshell their results show that the “learning” CCAPM does a good
job in explaining the cross-section of average stock returns in the U.S. However, the
results show that the “learning” factor seems to be not robust and at sometimes with
the wrong sign. Also, the inclusion of additional factor loadings on cross-effects that
result from the wedge between the information set of the investor and the econome-
trician but with no economic content seems controversial. As shown by Viale et. al.
(2013), the results seem to obey to the presence of model misspecification. This is
relevant, because this model is still rooted in the Rational Expectations Hypothesis
(REH), which assumes that investors “know” the data generation process (DGP)
driving dividends and stock returns. Their uncertainty is only limited to the state
of the economy, not the DGP, which they seek to learn updating their models as
“standard” Bayesian agents.

1.3. Learning under ambiguity in pure exchange economies. The model
in Viale, Garcia-Feijoo, and Giannetti (2013) is an example of a pure exchange
economy a la Lucas like the ones discussed bedore but where investors are averse to
ambiguity. The motivation for ambiguity comes from the experiments of Ellsberg,
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but ambiguity may arise by pure statistical arguments given the always present
limitations of data under the statistical learning paradigm.
(A.1) Like in the standard Bayesian case, the economy switches between the

good economic state (labeled 1) and the bad economic state (labeled
0).

(A.2) For each path ωt (a random sequence of 0 and 1 moves), the investor
chooses his level of consumption Ct as well as the shares ξi,t of wealth
Wt allocated to i = 1, . . . , n risky assets and the risk-free asset.

(A.3) At time t+ 1, conditional wealth is W s
t+1, where st = {0, 1} represents

the bad (respectively, good) transition of the economy from prior state
ωt.

(A.4) The typical investor is ambiguous (in the sense of Knight, Keynes,
Shackle, Roy, and Ellsberg) about the true one-step-ahead conditional
probabilities he should attach to the good state of the economy.

(A.5) He holds some prior beliefs πt (ωt) possibly derived from historical anal-
ysis, which defines his “reference model”. However, acknowledging his
limitations doubts the reference model and consequently entertains a
set of plausible alternative (distorted and close i.e., difficult to dis-
tinguish) models π∗t (ωt)around the reference model i.e., the so-called
multiple-priors set that differentiates the robust investor from his stan-
dard Bayesian counterpart. This recursive preferences setup with multi-
ple priors closely the approach introduced by Epstein and Wang (1994)
and formalized in Epstein and Schneider (2003).

(A.6) The statistical distance between the alternative models and the refer-
ence model is restricted by,

(1.16) Dt (π∗t ‖πt ) ≤ ηt,
where Dt (π∗t ‖πt ) denotes the Kullback-Leibler divergence or “relative
entropy”; and ηt is an exogenous state-dependent ambiguity parameter
that restricts what Epstein and Schneider call the entropy-constrained
ball containing all alternative measures π∗. In plain words, the scalar is
related to the typical investor’s confidence level on his reference model,
and avoids the degenerate case of infinite ambiguity aversion.

The ambiguity averse investor solves the following “robust” Hamilton-Jacobi-Bellman
equation with no regrets using backward induction,

,
(1.17)

J (Wt, t) = Max
{Ct,ξi,t}

{
U (Ct) + Min

{π∗t∈
∏
}
Et
[
π∗t J

(
W 1
t+1, t+ 1

)
+ (1− π∗t ) J

(
W 0
t+1, t+ 1

)]}
,

subject to the usual budget constraint,

(1.18) W s
t+1 = (Wt − Ct)

[
Rf,t +

n∑
i=1

ξi,t
(
Rsi,t+1 −Rf

)]
,

where Et [·] is the conditional expectation operator at time t = (0, 1, . . . , T − 1);
U (Ct) is increasing and concave; J (Wt, t) denotes the usual indirect utility function
on wealth; Rf,t is the gross return of one dollar invested in the risk-free asset; Rsi,t+1

is the conditional gross return of risky asset i at period t + 1; and the rest of the
variables are defined as before.
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The economic interpretation of the dynamic MaxMin problem is as follows. The
ambiguity averse investor first solves the inner constrained minimization problem
to identify the worst-case scenario among all alternative models π∗t given the refer-
ence model πt. The solution is a conditional measure (i.e., what the authors label
as the distorted probability of good economic times πLt ) that allows the investor
to calculate the “ambiguity certainty equivalent” of the continuation value func-
tion J

(
W s
t+1, t+ 1

)
. In the second (maximization) step, the investor proceeds in

the usual way solving a standard expected utility maximization problem, although
under the “distorted” probability measure.

Iterating backwards period by period, and accounting for the ambiguity con-
straint (1) gives the dynamically constrained H-J-B equation,

J (Wt, t) = Max
{Ct,ξi,t}

{
U (Ct) + Min

{π∗t ∈
∏}Et

[
π∗t J

(
W 1
t+1, t+ 1

)
+ (1− π∗t ) J

(
W 0
t+1, t+ 1

)
+

1

2
θt (Dt (π

∗
t ‖πt )− ηt)

]}
,

where θt ≥ 0 is the Lagrange multiplier corresponding to the ambiguity constraint
(1).

Relative entropy can be defined in terms of log-likelihood ratios,

Dt (π∗t ‖πt ) = Eπ∗t

[
ln

(
π∗t
πt

)]
= π∗t ln

(
π∗t
πt

)
+ (1− π∗t ) ln

(
1− π∗t
1− πt

)
.

Where a first order Taylor series approximation yields,

ln

(
π∗t
πt

)
≈
π∗t − πt
πt

,

which is well behaved since −1 ≤ π∗t−πt
πt

≤ 1 as long as πt is non-degenerate.
Substituting the previous equation into the definition of relative entropy results in,

ln

(
π∗t
πt

)
≈

(πt − π∗t )
2

πt (1− πt)
,

which in the entropy-based econometric literature is known as a “shrinkage estima-
tor”. After substituting this approximation into the H-J-B equation one solves the
inner minimization problem with F.O.N.C.,

(1.19) πt − π∗t =

{
Et
[
J
(
W 1
t+1, t+ 1

)]
− Et

[
J
(
W 0
t+1, t+ 1

)]}
πt (1− πt)

θt
,

and compementary slackness condition,

1

2
θt

(
(πt − π∗t )

2

πt (1− πt)
− ηt

)
= 0.

Substituting this into the F.O.N.C. gives,

(1.20) θt =

{
Et
[
J
(
W 1
t+1, t+ 1

)]
− Et

[
J
(
W 0
t+1, t+ 1

)]}
πt (1− πt)

√
2ηt

.

Substituting θt back into the F.O.N.C. yields the optimal “lower bound” for the
probability of good economic times, which corresponds to the worst case scenario,
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(1.21) πLt ≡ πt −
√

2ηtπt (1− πt),

such that 0 ≤ πt−πLt
πt

≤ 1. When equation (21) holds the robust H-J-B equation
turns into the usual one,

(1.22) J (Wt, t) = Max
{Ct,ξi,t}

{
U (Ct) + E

πLt
t [J (Wt+1, t+ 1)]

}
,

where Eπ
L
t
t [J (Wt+1, t+ 1)] ≡ πLt J

(
W 1
t+1, t+ 1

)
+
(
1− πLt

)
J
(
W 0
t+1, t+ 1

)
is the

ambiguity certainty equivalent of the expected continuation values under the worst-
case scenario. Recall that solving this maximization problem leads to the envelope
theorem condition and the fundamental asset pricing equation, which under ambi-
guity is,

(1.23) 1 = E
πLt
t [Mt,t+1Ri,t+1] .

The final step required for empirical implementations, is to know what is Mt,t+1.
One way to do this, is to follow the conditional asset pricing literature and impose
an affine factor structure for the SDF,

Mt−1,t = φ0t−1 + φf
′

t−1ft,

where the column vector ft =
(
ReMKT,t, R

e
dπLt

, RedKUNCt

)
includes the excess mar-

ket return, and excess returns of two tracking portfolios proxying for innovations
in the distorted probability πLt and the measure of investors’ ambiguityKUNC =
πt−πLt
πt

as factors. The time-varying coefficients φ̃
′

t−1 =
(
φ0t−1, φ

f ′

t−1

)
are also as-

sumed to be an affine function of innovations in a vector of state variables zt−1
driving the investment opportunity set,

φ0t−1 = a0 + b0dzt−1,

and,

φft−1 = af + bfdzt−1.

This step is similar to the implemenation in Ozoguz (2009) but with some im-
portant differences. Under ambiguity, dzt−1 = dπLt−1 is the scaling variable that
should be used to condition down the asset pricing model. Substituting into the
SDF gives the unconditional moment condition,

(1.24) 1 = E
[(
a0 + b0dπLt−1 + afft + bfdπLt−1ft

)
Ri,t

]
∀i risky assets.

By construction, the factors are orthogonal and the scaling variable is white
noise. Thus, the additional cross-term factors in Ozoguz (2009) that arise from the
wedge between the information set of the typical investor and the econometrician
are not present here.

Under ambiguity, the typical investor acts as a robust econometrician that ac-
knowledges his limitations and consequently doubts his reference model. So there is
no need for extra factors with no economic content, beyond the ones that span the
cross section of stock returns from theory and therefore are included in the SDF.
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The resulting empirical specification, which is suitable to be tested empirically,
is a three factor model with market beta and loadings on two additional factors
proxying for the three dimensions of systematic uncertainty: 1) systematic risk;
2) uncertainty regarding the state of the economy (which could be interpreted as
long-run risk); and 3) investors’ uncertainty regarding the reference model .

Viale et. al. (2013) test this model and an alternative version of it that in-
cludes five factors after subsituting the distorted probability with the vector of
state variables in Petkova (2006). This alternative especification can be interpreted
as a robust version of the empirical ICAPM of Petkova (2006), and the empirical
counterpart of Epstein and Schneider’s (2008) learning model when macro news
are assumed to be ambiguous. The authors find that ambiguity is priced in the
cross-section of average stock returns and that the ambiguity factor is not sub-
sumed by popular firm-specific and macro factors previously discussed in the asset
pricing literature. The learning under ambiguity model performs better than the
Bayesian learning model of Ozoguz (2009), the ICAPM of Petkova (2006), and the
Fama-French-Carhart empirically motivated model.

An important implication of this model is that unlike with noisy signals, ambigu-
ous news seem to carry a premium across stocks and consequently, robust investors
always discount more bad news than good news about the continuation probabil-
ity of the good economic regime, independently of the state of the economy. This
hypothesis is tested succesfully in Giannetti and Viale (2013).
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