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1. Behavioral Asset Pricing

1.1. Prospect theory based asset pricing model. Barberis, Huang, and Santos
(2001) assume a Lucas pure-exchange economy with three types of assets: a one-
period riskless asset in zero net supply with return from date t to time t+ 1 Rf,t;
a risky financial asset with random return Rt+1 from date t to time t + 1; and a
non-financial asset (e.g., fixed capital like a house or human capital) with income
Yt. Consequently, consumption Ct ≡ Dt + Yt is not perfectly correlated with the
stream of dividends from the financial asset Dt.
(A.1) Consumption and dividends follow a joint lognormal process,
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(A.2) Preferences are represented by,
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where π denotes the one-period value of endowment/wealth Wt invested in the
risky financial asset; 0 6= γ < 1; δ ∈ (0, 1) is the subjective discount factor; Xt ≡
πt−1 (Rt −Rf,t−1) is the total excess return over the risk-free return earned from
holding the risky asset between date t and t+1; bt is a scaling factor that makes the
price-dividend ratio and risk premium stationary; v (·) is a piecewise linear value
function that characterizes prospect theory cognitive biases effects on investors’
utility independent of consumption (with a kink at the origin); and zt < (>) 1 is a
variable that denotes the historic return benchmark level given accumulated prior
gains (losses) on the risky asset (i.e., the “reference point” of investors’ framing
process).
(A.5) zt = (1− η)+ηzt−1

R̄
Rt
, where 0 ≤ η ≤ 1 is investor’s memory effect from

accumulated prior gains/losses; and R̄ is the average risky asset return
that makes zt = 1 (break-even steady state). Notice, that if η = 0 (no
memory) then zt = 1 for all t. That is, the “reference point” tracks the
value of the risky asset one-to-one representing a myopic investor. If
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0 < η < 1 then zt adjusts sluggishly to the realized value of the risky
asset given the weight of prior acumulated gains/losses. On the other
hand, when η = 1 then the “reference point” moves too slowly to the
realized value of the risky asset characterizing an investor with long
memory. Furthermore, we differentiate two cases:

Case 1. If returns were relatively high last period i.e., Rt > R̄ then zt < zt−1.
Case 2. If returns were relatively low last period i.e., Rt < R̄ then zt > zt−1.
(A.6) For zt = 1 the function v (·) displays pure loss aversion,

v (Xt+1, πt, 1) =

{
Xt+1 if Xt+1 ≥ 0
λXt+1 if Xt+1 < 0

, for λ > 1.

(A.7) For zt 6= 1 the value function v (·) displays the house money effect (i.e.,
the RA is less risk averse as previous gains cushion subsequent losses)
with two cases:

Case 1. zt ≤ 1 i.e., the investor accumulated prior gains then,

v (Xt+1, πt, zt) =

{
Xt+1 if Rt+1 ≥ ztRf,t

Xt+1 + (λ− 1)πt (Rt+1 − ztRf,t) if Rt+1 < ztRf,t
, for λ > 1.

Case 2. zt > 1 i.e., the investor accumulated prior losses then,

v (Xt+1, πt, zt) =

{
Xt+1 if Xt+1 ≥ 0

λ (zt)Xt+1 if Xt+1 < 0
, for λ (zt) = λ+ k (zt − 1) , k > 0.

(A.8) bt = b0C
γ−1
t where b0 > 0 is the investor’s degree of framing.

Note that the state variables are Wt and zt as the consumption-dividend joint
process is i.i.d. To solve the intertemporal consumption-portfolio problem we
follow Barberis and Huang (2004) and assume that wealth evolves as Wt+1 =

(Wt − Ct)
(
πtR̃t+1

)
≡ (Wt − Ct) R̃W,t+1 (i.e., non-financial income is totally con-

sumed). Moreover, risky assets are seen as a “gamble” and we assume that the RA
frames the gamble “narrowly” i.e., looking only at the stock market. Finally, the
RA gets utility directly from the gamble and not indirectly from its contribution
to total wealth. The RA has utility of the recursive form,

Vt = f (Ct, µ (Vt+1 |zt )) ,

where f (C, x) = [(1− δ)Cγ + δxγ ]
1
γ is the aggregator function; and µ (·) is an

homogeneous of degree one certainty equivalent of the distribution of future utility
Vt+1 conditional on the reference point zt. Hence, preferences are now modeled
as,
(A.4)’ Vt = f (Ct, µ (Vt+1 |zt ) + b0Et [v̂ (Gt+1)]) ,

where Gt+1 = πt (Wt − Ct) (Rt+1 − zt).
Consider the special case zt = Rf,t (i.e., the reference point is the risk-free

return). Thus, the HJB equation is,
(1.1)
J (Wt, zt) = Max

{Ct,πt}
{(1− δ)Cγt + δ [µ (J (Wt+1, zt+1) |zt ) + b0Et [v̂ (Gt+1)]]

γ}
1
γ .

Write J (Wt, zt) = A (zt)Wt ≡ At |Wt . Thus AtWt is equal to,

Max
{Ct,πt}

{(1− δ)Cγt + δ (Wt − Ct) [µ (At+1πtRt+1 |zt ) + b0Et [v̂ (πt (Rt+1 −Rf,t))]]γ}
1
γ .
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As the consumption and portfolio decisions are separable, we can solve first the
consumption problem and get the F.O.N.C. w.r.t. to Ct, which is the standard
intertemporal envelope condition,

(1.2) Cγt = JW .

Define αt ≡ Ct
Wt

and write the Euler equilibrium equation,
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.

Solving the portfolio problem, the F.O.N.C. w.r.t. to πt leads to the fundamental
asset pricing equation for i risky financial assets,

∀i Et [v̂ (Ri,t+1 −Rf,t)] =

(1.4)
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Narrow framing of stocks can generate substantial equity premium potentially
resolving Mehra & Prescott’s equity risk premium puzzle. At the same time framing
generates a sufficiently low risk-free return resolving the risk-free rate puzzle. The
intuition is as follows: if the RA is more sensitive to losses (even small losses) than
gains and gets utility directly from the value of the stock market, then she finds the
stock market too risky and will only be willing to hold stocks for a relatively high
average return. This model is also capable of generating persistence and reversal
effects in stock returns. Finally, the RA’s framing process is narrow in the sense
that is only accounting for stock driven wealth, which represents a low percentage
of total wealth.

Behavioral models attempt to provide a positive or descriptive theory of how
investors “actually” behave in contrast with previous normative models that at-
tempt to explain how rational investors “should” behave. There is experimental
and empirical evidence of prospect theory cognitive biases like narrow framing and
loss aversion. The house money effect does not seem to be supported by some
recent empirical studies. One problem with the behavioral approach is that the
Lucas economy with a behavioral RA is observational equivalent to a Lucas econ-
omy with a rational RA with state-dependent utility e.g., with habit consumption
a la Constantinides/Campbell-Cochrane or a Bayesian RA that seeks to learn the
current level of the dividend process a la Veronesi.

2. Robust Asset Pricing

2.1. Kogan and Wang (2003) CAPM under Knightian uncertainty.
(A.1) We assume a one-period economy. Consumption takes place at the end

of period, and the RA is endowed with initial wealth W0 = 1.
(A.2) There are N risky assets with vector of returns R and perfectly elastic

supply, and one riskless asset in zero net supply with return r.
(A.3) The RA is assumed to be boundedly rational (i.e., like the econome-

trician of the conditional CAPM with a reduced information set). The
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RA does not have perfect knowledge of the distribution of returns of the
risky assets. Only knows that returns follow a joint Normal distribution,

f (R) = (2π)
− 1

2 |Ω|−
1
2 exp

{
−1

2
(R− µ)

T
Ω−1 (R− µ)

}
,

where µ = E [R]; and Ω = E
[
(R− µ) (R− µ)

T
]
. And knows Ω but not

µ. This gives rise to “model uncertainty”, “ambiguity”, or uncertainty in
the sense of Knight (1921) and Keynes (1921).

(A.4) Consequently, the RA has multi-prior expected utility preferences,

u (W,P (P )) = Min
{Q∈P(P )}

{
EQ [u (W )]

}
,

where EQ denotes the expectation under the risk-neutral probability
measure; P (P ) is the set of probability measures that depend on some
“reference” prior P and proxies the degree of model uncertainty per-
ceived by the RA i.e., a larger set implies more Knightian uncertainty.
The minimization operator captures the RA preference for uncertainty
aversion or “robustness”. Recall Ellsberg’s paradox?

(A.5) Define Jk = {j1, . . . , jNk} for k = 1, . . . ,K subsets or “classes” of as-
sets in the asset space {1, . . . , N} with Nk elements and not neces-
sarily disjoint. Thus, we can represent the RA’s information set de-
rived from multiple sources of risk in the space of risky asset returns
RJk = (RJ1 , . . . , RJNk). We assume that the investor has at least some
information about each class/asset. Moreover, the probability distri-
butions implied by the various sources of information not necessarily
coincide with the marginal distributions under the “reference” model.
The distribution function of RJk is,

(2π)
− 1

2 |ΩJk |
− 1

2 exp

{
−1

2
(RJk − µ̂Jk)

T
Ω−1
Jk

(RJk − µ̂Jk)

}
,

where µ̂Jk = (µ̂J1 , . . . , µ̂JNk) is the “predicted” mean return under the
“reference” model. If the likelihood ratio of the marginal distribution
QJk over Pjk is LJk , then the RA preferences can be now described by,

u (W, ν) = Min
{ν∈V}

{E [Lu (W )]} ,

where ν = µ− µ̂.
(A.6) Define X = πTR as the portfolio return with vector of weights π and

Normally distributed. We define the uncertainty of X in the sense of
Knight (1921) and Keynes (1921) as,

∆ (π) = Max
{ν}

{
πT ν

}
,

subject to,

E [LJk lnLJk ] =
1

2
νT Ω̂−1

Jk
ν ≤ ηk, k = 1, . . . ,K,

where ηk, k = 1, . . . ,K, are the RA multiple confidence levels for the
Nk likelihoods of the subsets Jk. The “uncertainty” metric is a dis-
similarity measure known as the “Mahalanobis distance” between two
random vectors Normally distributed. Note that distributions are close
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(bounded) to avoid infinite uncertainty aversion. For the special case
that the covariance matrix is the identity matrix, the distance collapses
to the familiar Euclidean distance. For the special case that the co-
variance matrix is diagonal, this distance collapses to the normalized
Euclidean distance. The multiple confidence levels that the RA enter-
tains about her “reference” model determine a confidence interval for
the expected portfolio return [−∆ (π) ,4 (π)]. Note that this metric is
independent of the RA’s utility, and is a convex and symmetric func-
tion of the portfolio weight, just like the variance. Hence, systematic
uncertainty can be defined similar to systematic risk as the marginal
contribution of the uncertainty of asset(class) i to the market portfolio
uncertainty.

The RA portfolio choice problem can be stated as,

(2.1) Max
{π}

Min
{ν∈V}

E [Lu (W )] ,

subject to the budget constraint,

(2.2) W =
[
πT (R− rι) + ι+ r

]
.

where ι denotes a vector of ones. The F.O.N.C. w.r.t. π is,

0 = E [u′ (W −4 (π)) (R− rι− ν (π))] .

We define πm as the market portfolio and 4m = ∆ (πm) as the market’s uncer-
tainty. Thus, the stochastic discount factor or pricing kernel is,

(2.3) M =
u′ (W −4m)

E [u′ (W −4m)]
.

In equilibrum risky asset must satisfy,

E [MR] = rι+ ν (πm) ,

and the market return,
E [MRm] = r +4m.

Applying Stein’s lemma to both equations we find the fundamental asset pricing
formula under Knightian uncertainty,

µ− rι =
E [u′′ (W −4m)]

E [u′ (W −4m)]
cov (Rm, R) + ν (πm) ,

µm − rι =
E [u′′ (W −4m)]

E [u′ (W −4m)]
σ2
m (π)

λ,risk premium

+ 4m
λu,uncertainty premium

.

(2.4) ⇒ (risk premium) = λβ + λuβu,

where λ is the market price of risk; λu is the market price of uncertainty; β is
market risk beta; and βu is market uncertainty beta.

Clearly, the model is capable of resolving both the equity premium and the risk
free puzzles. The problem with this model acknowledged by the authors is that (8)
appears observationally equivalent to Merton’s ICAPM.
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